These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38941659)
1. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. Wang Y; Cui T; Niu K; Ma H Ecotoxicol Environ Saf; 2024 Aug; 281():116633. PubMed ID: 38941659 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. Wang S; Dong Q; Wang Z Ecotoxicol Environ Saf; 2017 Nov; 145():200-206. PubMed ID: 28734223 [TBL] [Abstract][Full Text] [Related]
3. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. Wang Y; Cui T; Niu K; Ma H Chemosphere; 2024 Sep; 363():142937. PubMed ID: 39059638 [TBL] [Abstract][Full Text] [Related]
4. Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. Cui T; Wang Y; Niu K; Dong W; Zhang R; Ma H J Plant Physiol; 2023 Mar; 282():153919. PubMed ID: 36706576 [TBL] [Abstract][Full Text] [Related]
5. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. Wang Y; Cui T; Niu K; Ma H J Hazard Mater; 2024 Aug; 474():134727. PubMed ID: 38824780 [TBL] [Abstract][Full Text] [Related]
6. Differential Cadmium Distribution and Translocation in Roots and Shoots Related to Hyper-Tolerance between Tall Fescue and Kentucky Bluegrass. Dong Q; Xu P; Wang Z Front Plant Sci; 2017; 8():113. PubMed ID: 28217136 [TBL] [Abstract][Full Text] [Related]
7. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Wang L; Li R; Yan X; Liang X; Sun Y; Xu Y Ecotoxicol Environ Saf; 2020 May; 194():110369. PubMed ID: 32135380 [TBL] [Abstract][Full Text] [Related]
8. Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). Fei L; Xu P; Dong Q; Mo Q; Wang Z Chemosphere; 2018 Dec; 212():124-132. PubMed ID: 30144673 [TBL] [Abstract][Full Text] [Related]
9. The differences of cell wall in roots between two contrasting soybean cultivars exposed to cadmium at young seedlings. Wang P; Yang B; Wan H; Fang X; Yang C Environ Sci Pollut Res Int; 2018 Oct; 25(29):29705-29714. PubMed ID: 30145752 [TBL] [Abstract][Full Text] [Related]
10. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. Niu K; Zhu R; Wang Y; Zhao C; Ma H Ecotoxicol Environ Saf; 2023 Jan; 249():114460. PubMed ID: 38321679 [TBL] [Abstract][Full Text] [Related]
11. Bamboo vinegar regulates the phytoremediation efficiency of Perilla frutescens (L.) Britt. by reducing membrane lipid damage and increasing cadmium retention. Li Z; Hao X; He T; Chen Y; Yang M; Rong C; Gu C; Xiao Q; Lin R; Zheng X J Hazard Mater; 2024 Sep; 476():135155. PubMed ID: 38991637 [TBL] [Abstract][Full Text] [Related]
12. Screening of the proteins related to the cultivar-dependent cadmium accumulation of Brassica parachinensis L. Fu HL; Wang XS; Huang YY; Gong FY; Guo JJ; He CT; Yang ZY Ecotoxicol Environ Saf; 2020 Jan; 188():109858. PubMed ID: 31706236 [TBL] [Abstract][Full Text] [Related]
13. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Xin JP; Zhang Y; Tian RN Ecotoxicol Environ Saf; 2018 Dec; 165():611-621. PubMed ID: 30241089 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of cadmium immobilization in the cell wall of root in a cadmium-safe rice line (Oryza sativa L.). Yu H; Guo J; Li Q; Zhang X; Huang H; Huang F; Yang A; Li T Chemosphere; 2020 Feb; 241():125095. PubMed ID: 31683432 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Cd subcellular distribution and Cd detoxification between low/high Cd-accumulative rice cultivars and sea rice. Yang X; Lin R; Zhang W; Xu Y; Wei X; Zhuo C; Qin J; Li H Ecotoxicol Environ Saf; 2019 Dec; 185():109698. PubMed ID: 31574370 [TBL] [Abstract][Full Text] [Related]
16. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Hu C Chemosphere; 2015 Jan; 119():1217-1223. PubMed ID: 25460764 [TBL] [Abstract][Full Text] [Related]
17. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.). Wang K; Song N; Zhao Q; van der Zee SE Environ Sci Pollut Res Int; 2016 Jan; 23(2):1441-8. PubMed ID: 26370815 [TBL] [Abstract][Full Text] [Related]
18. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Jia W; Lv S; Feng J; Li J; Li Y; Li S Environ Sci Pollut Res Int; 2016 Sep; 23(18):18823-31. PubMed ID: 27318481 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Xian J; Wang Y; Niu K; Ma H; Ma X Chemosphere; 2020 Jul; 250():126158. PubMed ID: 32092564 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. Yu R; Jiang Q; Xv C; Li L; Bu S; Shi G BMC Plant Biol; 2019 Apr; 19(1):137. PubMed ID: 30975099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]