These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38941776)

  • 41. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies.
    Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y
    Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa
    Ding Z; Wang Y; Zhou Q; Ding Z; Liu J; He Q; Zhang H
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31906220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application.
    Fu S; Zhao X; Yang L; Qin G; Zhang E
    Biomater Adv; 2022 Feb; 133():112653. PubMed ID: 35034820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology.
    Gordin DM; Gloriant T; Chane-Pane V; Busardo D; Mitran V; Höche D; Vasilescu C; Drob SI; Cimpean A
    J Mater Sci Mater Med; 2012 Dec; 23(12):2953-66. PubMed ID: 22918550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry.
    Tamayo JA; Riascos M; Vargas CA; Baena LM
    Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of novel Ti-40Nb-xCu alloy and surface treatment with superior antibacterial property and biocompatibility using micro-arc oxidation for dental implants.
    Kang B; Chen X; Qi S; Ma F; Liu P
    J Mech Behav Biomed Mater; 2024 Sep; 157():106605. PubMed ID: 38852242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold.
    Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q
    Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application.
    Tong X; Dong Y; Zhou R; Shen X; Li Y; Jiang Y; Wang H; Wang J; Lin J; Wen C
    Adv Healthc Mater; 2024 May; 13(12):e2303975. PubMed ID: 38235953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants.
    Niu J; Guo Y; Li K; Liu W; Dan Z; Sun Z; Chang H; Zhou L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111917. PubMed ID: 33641910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of mechanical properties, in vitro corrosion resistance and biocompatibility of Gum Metal in the context of implant applications.
    Golasiński KM; Detsch R; Szklarska M; Łosiewicz B; Zubko M; Mackiewicz S; Pieczyska EA; Boccaccini AR
    J Mech Behav Biomed Mater; 2021 Mar; 115():104289. PubMed ID: 33388535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of coupling asynchronous acoustoelectric effects on the corrosion behavior, microhardness and biocompatibility of biomedical titanium alloy strips.
    Ye X; Tang G
    J Mater Sci Mater Med; 2015 Jan; 26(1):5371. PubMed ID: 25596862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants.
    Tong X; Shi Z; Xu L; Lin J; Zhang D; Wang K; Li Y; Wen C
    Acta Biomater; 2020 Jan; 102():481-492. PubMed ID: 31740321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement.
    Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H
    Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.
    Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials.
    Yılmaz E; Gökçe A; Findik F; Gulsoy HO; İyibilgin O
    J Mech Behav Biomed Mater; 2018 Nov; 87():59-67. PubMed ID: 30041140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: On the effect of the load direction.
    Cutolo A; Engelen B; Desmet W; Van Hooreweder B
    J Mech Behav Biomed Mater; 2020 Apr; 104():103656. PubMed ID: 32174413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Zr Addition on the Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of Novel Biomedical Ti-Zr-Mo-Mn Alloys.
    Li Z; Wo J; Fu Y; Xu X; Wang B; Liu H; You D; Sun G; Li W; Wang X
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6935-6946. PubMed ID: 37941371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of Ti-10Nb alloy by powder metallurgy processing route for dental application.
    Kumar R; Gautam RK
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35338. PubMed ID: 37846459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.
    Das M; Bhattacharya K; Dittrick SA; Mandal C; Balla VK; Sampath Kumar TS; Bandyopadhyay A; Manna I
    J Mech Behav Biomed Mater; 2014 Jan; 29():259-71. PubMed ID: 24121827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching.
    Lei Z; Zhang H; Zhang E; You J; Ma X; Bai X
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():121-131. PubMed ID: 30184735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.