These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38942092)
1. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1α degradation in breast cancer. Si Y; Ou H; Jin X; Gu M; Sheng S; Peng W; Yang D; Zhan X; Zhang L; Yu Q; Liu X; Liu Y Free Radic Biol Med; 2024 Sep; 222():478-492. PubMed ID: 38942092 [TBL] [Abstract][Full Text] [Related]
2. Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha. Baek JH; Liu YV; McDonald KR; Wesley JB; Zhang H; Semenza GL J Biol Chem; 2007 Nov; 282(46):33358-33366. PubMed ID: 17875644 [TBL] [Abstract][Full Text] [Related]
3. Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. Liu YV; Hubbi ME; Pan F; McDonald KR; Mansharamani M; Cole RN; Liu JO; Semenza GL J Biol Chem; 2007 Dec; 282(51):37064-73. PubMed ID: 17965024 [TBL] [Abstract][Full Text] [Related]
4. Suppression of TRPM7 Inhibited Hypoxia-Induced Migration and Invasion of Androgen-Independent Prostate Cancer Cells by Enhancing RACK1-Mediated Degradation of HIF-1 Yang F; Cai J; Zhan H; Situ J; Li W; Mao Y; Luo Y Oxid Med Cell Longev; 2020; 2020():6724810. PubMed ID: 32215176 [TBL] [Abstract][Full Text] [Related]
5. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Liu YV; Baek JH; Zhang H; Diez R; Cole RN; Semenza GL Mol Cell; 2007 Jan; 25(2):207-17. PubMed ID: 17244529 [TBL] [Abstract][Full Text] [Related]
6. RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization. Liu YV; Semenza GL Cell Cycle; 2007 Mar; 6(6):656-9. PubMed ID: 17361105 [TBL] [Abstract][Full Text] [Related]
7. Ion channel TRPM8 promotes hypoxic growth of prostate cancer cells via an O2 -independent and RACK1-mediated mechanism of HIF-1α stabilization. Yu S; Xu Z; Zou C; Wu D; Wang Y; Yao X; Ng CF; Chan FL J Pathol; 2014 Dec; 234(4):514-25. PubMed ID: 25065497 [TBL] [Abstract][Full Text] [Related]
8. TARBP2 Suppresses Ubiquitin-Proteasomal Degradation of HIF-1α in Breast Cancer. Li JN; Chen PS; Chiu CF; Lyu YJ; Lo C; Tsai LW; Wang MY Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008634 [TBL] [Abstract][Full Text] [Related]
10. LINC00365 functions as a tumor suppressor by inhibiting HIF-1α-mediated glucose metabolism reprogramming in breast cancer. Liu B; Qu X; Wang J; Xu L; Zhang L; Xu B; Su J; Bian X Exp Cell Res; 2023 Apr; 425(1):113514. PubMed ID: 36804531 [TBL] [Abstract][Full Text] [Related]
11. RACK1 mediates the advanced glycation end product-induced degradation of HIF-1α in nucleus pulposus cells via competing with HSP90 for HIF-1α binding. Xu YC; Gu Y; Yang JY; Xi K; Tang JC; Bian J; Cai F; Chen L Cell Biol Int; 2021 Jun; 45(6):1316-1326. PubMed ID: 33620117 [TBL] [Abstract][Full Text] [Related]
12. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis. Zhang W; Tong D; Liu F; Li D; Li J; Cheng X; Wang Z Oncotarget; 2016 Feb; 7(5):5800-14. PubMed ID: 26735579 [TBL] [Abstract][Full Text] [Related]
13. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Zheng F; Chen J; Zhang X; Wang Z; Chen J; Lin X; Huang H; Fu W; Liang J; Wu W; Li B; Yao H; Hu H; Song E Nat Commun; 2021 Feb; 12(1):1341. PubMed ID: 33637716 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Hua Q; Mi B; Xu F; Wen J; Zhao L; Liu J; Huang G Theranostics; 2020; 10(11):4762-4778. PubMed ID: 32308748 [No Abstract] [Full Text] [Related]
15. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/ glycolysis axis in lung adenocarcinoma. Chen Z; Hu Z; Sui Q; Huang Y; Zhao M; Li M; Liang J; Lu T; Zhan C; Lin Z; Sun F; Wang Q; Tan L Int J Biol Sci; 2022; 18(2):522-535. PubMed ID: 35002507 [No Abstract] [Full Text] [Related]
16. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer. Xia L; Sun J; Xie S; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Sha J; Xue W Cell Prolif; 2020 Nov; 53(11):e12918. PubMed ID: 33025691 [TBL] [Abstract][Full Text] [Related]
17. GPER-mediated stabilization of HIF-1α contributes to upregulated aerobic glycolysis in tamoxifen-resistant cells. Zhang Y; Song Y; Ren S; Zhang M; Zhang Z; Fan S; Liu X; Peng X; Qi Q; Shen X; Chen Y Oncogene; 2023 Jan; 42(3):184-197. PubMed ID: 36400971 [TBL] [Abstract][Full Text] [Related]
18. Long noncoding RNA LINC00518 induces radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop in melanoma. Liu Y; He D; Xiao M; Zhu Y; Zhou J; Cao K Cell Death Dis; 2021 Mar; 12(3):245. PubMed ID: 33664256 [TBL] [Abstract][Full Text] [Related]
19. Ginsenoside Rh2 shifts tumor metabolism from aerobic glycolysis to oxidative phosphorylation through regulating the HIF1-α/PDK4 axis in non-small cell lung cancer. Liu X; Li J; Huang Q; Jin M; Huang G Mol Med; 2024 Apr; 30(1):56. PubMed ID: 38671369 [TBL] [Abstract][Full Text] [Related]
20. Balanophorin B inhibited glycolysis with the involvement of HIF-1α. Dai T; Li L; Qi W; Liu B; Jiang Z; Song J; Hua H Life Sci; 2021 Feb; 267():118910. PubMed ID: 33359671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]