These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38942187)
81. Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering. Kang H; Zeng Y; Varghese S Acta Biomater; 2018 Sep; 78():365-377. PubMed ID: 30031911 [TBL] [Abstract][Full Text] [Related]
82. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment. Huebner P; Warren PB; Chester D; Spang JT; Brown AC; Fisher MB; Shirwaiker RA Connect Tissue Res; 2020 Mar; 61(2):190-204. PubMed ID: 31345062 [No Abstract] [Full Text] [Related]
83. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy. Fee T; Downs C; Eberhardt A; Zhou Y; Berry J J Biomed Mater Res A; 2016 Jul; 104(7):1680-6. PubMed ID: 26939754 [TBL] [Abstract][Full Text] [Related]
84. Development and biological validation of a cyclic stretch culture system for the ex vivo engineering of tendons. Raimondi MT; Laganà M; Conci C; Crestani M; Di Giancamillo A; Gervaso F; Deponti D; Boschetti F; Nava MM; Scandone C; Domeneghini C; Sannino A; Peretti GM Int J Artif Organs; 2018 Jul; 41(7):400-412. PubMed ID: 29781355 [TBL] [Abstract][Full Text] [Related]
85. Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Bicho D; Canadas RF; Gonçalves C; Pina S; Reis RL; Oliveira JM J Biomater Sci Polym Ed; 2021 Oct; 32(15):1966-1982. PubMed ID: 34228590 [TBL] [Abstract][Full Text] [Related]
86. Melt electrowriting scaffolds with fibre-guiding features for periodontal attachment. Staples R; Ivanovski S; Vaswani K; Vaquette C Acta Biomater; 2024 May; 180():337-357. PubMed ID: 38583749 [TBL] [Abstract][Full Text] [Related]
87. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Mozdzen LC; Rodgers R; Banks JM; Bailey RC; Harley BA Acta Biomater; 2016 Mar; 33():25-33. PubMed ID: 26850145 [TBL] [Abstract][Full Text] [Related]
88. Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation. Samolyk BL; Pace ZY; Li J; Billiar KL; Coburn JM; Whittington CF; Pins GD Tissue Eng Part C Methods; 2024 May; 30(5):217-228. PubMed ID: 38562112 [TBL] [Abstract][Full Text] [Related]
89. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. Schmitt PR; Dwyer KD; Coulombe KLK ACS Appl Bio Mater; 2022 Jun; 5(6):2461-2480. PubMed ID: 35623101 [TBL] [Abstract][Full Text] [Related]
90. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. Haaparanta AM; Järvinen E; Cengiz IF; Ellä V; Kokkonen HT; Kiviranta I; Kellomäki M J Mater Sci Mater Med; 2014 Apr; 25(4):1129-36. PubMed ID: 24375147 [TBL] [Abstract][Full Text] [Related]
91. Tuning composition and architecture of biomimetic scaffolds for enhanced matrix synthesis by murine cardiomyocytes. Gishto A; Farrell K; Kothapalli CR J Biomed Mater Res A; 2015 Feb; 103(2):693-708. PubMed ID: 24798055 [TBL] [Abstract][Full Text] [Related]
93. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related]
94. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777 [TBL] [Abstract][Full Text] [Related]