These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38942319)

  • 1. Developing a dynamic life cycle assessment framework for buildings through integrating building information modeling and building energy modeling program.
    Yang T; Dong Y; Tang B; Xu Z
    Sci Total Environ; 2024 Oct; 946():174284. PubMed ID: 38942319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GHG emissions and energy consumption of residential buildings-a systematic review and meta-analysis.
    Fan Y; Fang C
    Environ Monit Assess; 2023 Jun; 195(7):885. PubMed ID: 37358677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Life Cycle Assessments of a Conventional Green Building and a Net Zero Energy Building: Exploration of Static, Dynamic, Attributional, and Consequential Electricity Grid Models.
    Collinge WO; Rickenbacker HJ; Landis AE; Thiel CL; Bilec MM
    Environ Sci Technol; 2018 Oct; 52(19):11429-11438. PubMed ID: 30193455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of the carbon footprint in green building materials: a case study of Norway.
    Aboutorabi RSS; Yousefi H; Abdoos M
    Environ Sci Pollut Res Int; 2024 Oct; 31(49):59320-59341. PubMed ID: 39348018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis.
    Liu Z; Li P; Wang F; Osmani M; Demian P
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LCA and economic cradle-to-gate analysis on the reuse of a temporary building.
    Katebi A; Eghdam HH; Asadollahfardi G
    Environ Sci Pollut Res Int; 2024 Oct; 31(49):59087-59102. PubMed ID: 39331295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative life cycle assessment of light frame timber and reinforced concrete masonry structural systems for single-family houses in Luxembourg.
    Eslami H; Yaghma A; Jayasinghe LB; Waldmann D
    Heliyon; 2024 Feb; 10(4):e26083. PubMed ID: 38390173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template for Evaluating Cradle-to-Site Environmental Life Cycle Impacts of Buildings in India.
    Chaudhary A; Akhtar A
    ACS Environ Au; 2023 Mar; 3(2):94-104. PubMed ID: 37102085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for enhancing the accuracy of evaluation and sustainability performance of building.
    Hossain MU; Ng ST
    J Environ Manage; 2020 May; 261():110230. PubMed ID: 32148300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.
    Silvestre JD; Pargana N; de Brito J; Pinheiro MD; Durão V
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarbonization potentials of the embodied energy use and operational process in buildings: A review from the life-cycle perspective.
    Liang Y; Li C; Liu Z; Wang X; Zeng F; Yuan X; Pan Y
    Heliyon; 2023 Oct; 9(10):e20190. PubMed ID: 37810847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cradle-to-grave life-cycle assessment within the built environment: Comparison between the refurbishment and the complete reconstruction of an office building in Belgium.
    Marique AF; Rossi B
    J Environ Manage; 2018 Oct; 224():396-405. PubMed ID: 30064066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations.
    Su S; Ju J; Ding Y; Yuan J; Cui P
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporalis, a generic method and tool for dynamic Life Cycle Assessment.
    Cardellini G; Mutel CL; Vial E; Muys B
    Sci Total Environ; 2018 Dec; 645():585-595. PubMed ID: 30029133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of Urban Building Types and Their Energy Use and Carbon Emissions in Life-Cycle Analyses from Low- and Middle-Income Countries.
    Iyer AV; Rao ND; Hertwich EG
    Environ Sci Technol; 2023 Jul; 57(26):9445-9458. PubMed ID: 37339013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland.
    Rinne R; Ilgın HE; Karjalainen M
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment models and dynamic variables for dynamic life cycle assessment of buildings: a review.
    Su S; Zhang H; Zuo J; Li X; Yuan J
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):26199-26214. PubMed ID: 33786761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.
    Petersdorff C; Boermans T; Harnisch J
    Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of carbon emissions peak and carbon neutrality based on life cycle CO
    Xin L; Li S; Rene ER; Lun X; Zhang P; Ma W
    Environ Res; 2023 Dec; 238(Pt 1):117160. PubMed ID: 37717801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.