These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38942401)
1. Superhydrophobic stereocomplex-type polylactide/ultra-fine glass fibers aerogel for passive daytime radiative cooling. Liao S; Bai D; Jia Y; Sun J; Liu H; Li L; Xu M Int J Biol Macromol; 2024 Aug; 274(Pt 2):133470. PubMed ID: 38942401 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic Composite Coatings Can Achieve Durability and Efficient Radiative Cooling of Energy-Saving Buildings. Zhou W; Ma X; Liu M; Niu J; Wang S; Li S; Wang W; Fan Y ACS Appl Mater Interfaces; 2024 Sep; 16(35):46703-46718. PubMed ID: 39177497 [TBL] [Abstract][Full Text] [Related]
3. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044 [TBL] [Abstract][Full Text] [Related]
4. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic SiO Sun Y; He H; Huang X; Guo Z ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243 [TBL] [Abstract][Full Text] [Related]
6. Sustainable cellulose foams for all-weather high-performance radiative cooling and building insulation. Bai Y; Jia X; Shan Z; Huang C; Wang D; Yang J; Pang B; Song H Carbohydr Polym; 2024 Jun; 333():121951. PubMed ID: 38494216 [TBL] [Abstract][Full Text] [Related]
7. A Versatile Strategy for Concurrent Passive Daytime Radiative Cooling and Sustainable Energy Harvesting. Wang S; Wu Y; Pu M; Xu M; Zhang R; Yu T; Li X; Ma X; Su Y; Tai H; Guo Y; Luo X Small; 2024 Feb; 20(6):e2305706. PubMed ID: 37788906 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling. Yang M; Zou W; Guo J; Qian Z; Luo H; Yang S; Zhao N; Pattelli L; Xu J; Wiersma DS ACS Appl Mater Interfaces; 2020 Jun; 12(22):25286-25293. PubMed ID: 32378874 [TBL] [Abstract][Full Text] [Related]
9. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Leroy A; Bhatia B; Kelsall CC; Castillejo-Cuberos A; Di Capua H M; Zhao L; Zhang L; Guzman AM; Wang EN Sci Adv; 2019 Oct; 5(10):eaat9480. PubMed ID: 31692957 [TBL] [Abstract][Full Text] [Related]
10. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Kong A; Cai B; Shi P; Yuan XC Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263 [TBL] [Abstract][Full Text] [Related]
11. Aerogel-Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling. Shan X; Liu L; Wu Y; Yuan D; Wang J; Zhang C; Wang J Adv Sci (Weinh); 2022 Jul; 9(20):e2201190. PubMed ID: 35474617 [TBL] [Abstract][Full Text] [Related]
12. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669 [TBL] [Abstract][Full Text] [Related]
13. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488 [TBL] [Abstract][Full Text] [Related]
14. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range. Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771 [TBL] [Abstract][Full Text] [Related]
15. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925 [TBL] [Abstract][Full Text] [Related]
16. Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling. Lian M; Ding W; Liu S; Wang Y; Zhu T; Miao YE; Zhang C; Liu T Nanomicro Lett; 2024 Feb; 16(1):131. PubMed ID: 38409640 [TBL] [Abstract][Full Text] [Related]
17. Rational Design and Fine Fabrication of Passive Daytime Radiative Cooling Textiles Integrate Antibacterial, UV-Shielding, and Self-Cleaning Characteristics. Li BB; Zhang GL; Xue QK; Luo P; Zhao X; Xue YB; Wu B; Han B; Liu HJ; Wang ZS; Zheng M; Zhuo MP ACS Appl Mater Interfaces; 2024 Oct; 16(39):52633-52644. PubMed ID: 39300615 [TBL] [Abstract][Full Text] [Related]
18. Experimental Study on Energy-Free Superhydrophobic Radiative Cooling Versatile Film with Enhanced Environmental Tolerance. Nie S; Bai L; Lin G; Yuan K; Fu J; Zhang Y; Wang H; Lan H; Liu P; Tan X; Li X ACS Appl Mater Interfaces; 2024 May; 16(19):25498-25510. PubMed ID: 38701230 [TBL] [Abstract][Full Text] [Related]
19. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired Switchable Passive Daytime Radiative Cooling Coatings. Wang T; Xiao Y; King JL; Kats MA; Stebe KJ; Lee D ACS Appl Mater Interfaces; 2023 Oct; 15(41):48716-48724. PubMed ID: 37812501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]