These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38942481)

  • 41. The fidelity of misinsertion and mispair extension throughout DNA synthesis exhibited by mutants of the reverse transcriptase of human immunodeficiency virus type 2 resistant to nucleoside analogs.
    Taube R; Avidan O; Hizi A
    Eur J Biochem; 1997 Nov; 250(1):106-14. PubMed ID: 9431997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots.
    Bebenek K; Abbotts J; Wilson SH; Kunkel TA
    J Biol Chem; 1993 May; 268(14):10324-34. PubMed ID: 7683675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron.
    Zhao C; Liu F; Pyle AM
    RNA; 2018 Feb; 24(2):183-195. PubMed ID: 29109157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TGIRT-seq Protocol for the Comprehensive Profiling of Coding and Non-coding RNA Biotypes in Cellular, Extracellular Vesicle, and Plasma RNAs.
    Xu H; Nottingham RM; Lambowitz AM
    Bio Protoc; 2021 Dec; 11(23):e4239. PubMed ID: 35005084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence.
    Chen B; Lambowitz AM
    J Mol Biol; 1997 Aug; 271(3):311-32. PubMed ID: 9268661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The fidelity of the reverse transcriptases of human immunodeficiency viruses and murine leukemia virus, exhibited by the mispair extension frequencies, is sequence dependent and enzyme related.
    Bakhanashvili M; Hizi A
    FEBS Lett; 1993 Mar; 319(1-2):201-5. PubMed ID: 7681015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reverse Transcriptases: From Discovery and Applications to Xenobiology.
    Huber LB; Betz K; Marx A
    Chembiochem; 2023 Mar; 24(5):e202200521. PubMed ID: 36354312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor.
    Wang H; Lambowitz AM
    Cell; 1993 Dec; 75(6):1071-81. PubMed ID: 7505202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The accuracy of reverse transcriptase from HIV-1.
    Roberts JD; Bebenek K; Kunkel TA
    Science; 1988 Nov; 242(4882):1171-3. PubMed ID: 2460925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reverse Transcriptase: From Transcriptomics to Genome Editing.
    Martín-Alonso S; Frutos-Beltrán E; Menéndez-Arias L
    Trends Biotechnol; 2021 Feb; 39(2):194-210. PubMed ID: 32653101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase.
    Nottingham RM; Wu DC; Qin Y; Yao J; Hunicke-Smith S; Lambowitz AM
    RNA; 2016 Apr; 22(4):597-613. PubMed ID: 26826130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage.
    Penno C; Kumari R; Baranov PV; van Sinderen D; Atkins JF
    Nucleic Acids Res; 2017 Sep; 45(17):10143-10155. PubMed ID: 28973469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Template-independent DNA synthesis activity associated with the reverse transcriptase of the long terminal repeat retrotransposon Tf1.
    Oz-Gleenberg I; Herzig E; Hizi A
    FEBS J; 2012 Jan; 279(1):142-53. PubMed ID: 22035236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly specific recognition of primer RNA structures for 2'-OH priming reaction by bacterial reverse transcriptases.
    Inouye S; Hsu MY; Xu A; Inouye M
    J Biol Chem; 1999 Oct; 274(44):31236-44. PubMed ID: 10531319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.
    Okano H; Baba M; Kawato K; Hidese R; Yanagihara I; Kojima K; Takita T; Fujiwara S; Yasukawa K
    J Biosci Bioeng; 2018 Mar; 125(3):275-281. PubMed ID: 29100684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reverse transcriptases prime DNA synthesis.
    Zabrady M; Zabrady K; Li AWH; Doherty AJ
    Nucleic Acids Res; 2023 Aug; 51(14):7125-7142. PubMed ID: 37279911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA.
    Zimmerly S; Moran JV; Perlman PS; Lambowitz AM
    J Mol Biol; 1999 Jun; 289(3):473-90. PubMed ID: 10356323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 30 years later--a new approach to Sol Spiegelman's and Leslie Orgel's in vitro evolutionary studies. Dedicated to Leslie Orgel on the occasion of his 70th birthday.
    Oehlenschläger F; Eigen M
    Orig Life Evol Biosph; 1997 Dec; 27(5-6):437-57. PubMed ID: 9394469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase.
    Döring J; Hurek T
    Nucleic Acids Res; 2017 Apr; 45(7):3967-3984. PubMed ID: 28160599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.