These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38942770)

  • 1. Temporally aligned segmentation and clustering (TASC) framework for behavior time series analysis.
    Zinkovskaia E; Tahary O; Loewenstern Y; Benaroya-Milshtein N; Bar-Gad I
    Sci Rep; 2024 Jun; 14(1):14952. PubMed ID: 38942770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework.
    Chun-Guang Li ; Chong You ; Vidal R
    IEEE Trans Image Process; 2017 Jun; 26(6):2988-3001. PubMed ID: 28410106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering.
    Xia G; Sun H; Feng L; Zhang G; Liu Y
    IEEE Trans Image Process; 2018 Jan.; 27(1):135-150. PubMed ID: 28809685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
    Zhou F; De la Torre F; Hodgins JK
    IEEE Trans Pattern Anal Mach Intell; 2013 Mar; 35(3):582-96. PubMed ID: 22732658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering.
    Rundo L; Beer L; Ursprung S; Martin-Gonzalez P; Markowetz F; Brenton JD; Crispin-Ortuzar M; Sala E; Woitek R
    Comput Biol Med; 2020 May; 120():103751. PubMed ID: 32421652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering.
    Javed S; Mahmood A; Bouwmans T; Soon Ki Jung
    IEEE Trans Image Process; 2017 Dec; 26(12):5840-5854. PubMed ID: 28866495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to fit transfer models to learning data: a segmentation/clustering approach.
    Mezzadri G; Laloë T; Mathy F; Reynaud-Bouret P
    Behav Res Methods; 2024 Mar; 56(3):2549-2568. PubMed ID: 37470953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal compartment segmentation in DCE-MRI images.
    Yang X; Le Minh H; Tim Cheng KT; Sung KH; Liu W
    Med Image Anal; 2016 Aug; 32():269-80. PubMed ID: 27236222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MultiSegVA: Using Visual Analytics to Segment Biologging Time Series on Multiple Scales.
    Meschenmoser P; Buchmuller JF; Seebacher D; Wikelski M; Keim DA
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1623-1633. PubMed ID: 33052856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data.
    Hallac D; Vare S; Boyd S; Leskovec J
    KDD; 2017 Aug; 2017():215-223. PubMed ID: 29770257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Structure Constraint Matrix Factorization Framework for Human Behavior Segmentation.
    Gao H; Lv C; Zhang T; Zhao H; Jiang L; Zhou J; Liu Y; Huang Y; Han C
    IEEE Trans Cybern; 2022 Dec; 52(12):12978-12988. PubMed ID: 34403350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Series Clustering Based on the Characterization of Segment Typologies.
    Guijo-Rubio D; Duran-Rosal AM; Gutierrez PA; Troncoso A; Hervas-Martinez C
    IEEE Trans Cybern; 2021 Nov; 51(11):5409-5422. PubMed ID: 31945011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain Adaptation Using Structurally Regularized Deep Clustering.
    Tang H; Zhu X; Chen K; Jia K; Chen CLP
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6517-6533. PubMed ID: 34106846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OPTIMAL: An OPTimized Imaging Mass cytometry AnaLysis framework for benchmarking segmentation and data exploration.
    Hunter B; Nicorescu I; Foster E; McDonald D; Hulme G; Fuller A; Thomson A; Goldsborough T; Hilkens CMU; Majo J; Milross L; Fisher A; Bankhead P; Wills J; Rees P; Filby A; Merces G
    Cytometry A; 2024 Jan; 105(1):36-53. PubMed ID: 37750225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI.
    Halder A; Talukdar NA
    Magn Reson Imaging; 2019 Oct; 62():129-151. PubMed ID: 31247252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cooperative Learning-Based Clustering Approach to Lip Segmentation Without Knowing Segment Number.
    Cheung YM; Li M; Peng Q; Chen CL
    IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):80-93. PubMed ID: 26685267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized method for segmentation of ancient mural images based on superpixel algorithm.
    Liang J; Liu A; Zhou J; Xin L; Zuo Z; Liu Z; Luo H; Chen J; Hu X
    Front Neurosci; 2022; 16():1031524. PubMed ID: 36408409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical clustering applied to automatic atlas based segmentation of 25 cardiac sub-structures.
    Maffei N; Fiorini L; Aluisio G; D'Angelo E; Ferrazza P; Vanoni V; Lohr F; Meduri B; Guidi G
    Phys Med; 2020 Jan; 69():70-80. PubMed ID: 31835189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.