These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38942794)

  • 1. Reactive shepherding along a dynamic path.
    Van Havermaet S; Khaluf Y; Simoens P
    Sci Rep; 2024 Jun; 14(1):14915. PubMed ID: 38942794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steering herds away from dangers in dynamic environments.
    Van Havermaet S; Simoens P; Landgraf T; Khaluf Y
    R Soc Open Sci; 2023 May; 10(5):230015. PubMed ID: 37234508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
    Lee W; Kim D
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative shepherding control for agents with heterogeneous responsivity.
    Himo R; Ogura M; Wakamiya N
    Math Biosci Eng; 2022 Jan; 19(4):3509-3525. PubMed ID: 35341262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the shepherding problem: heuristics for herding autonomous, interacting agents.
    Strömbom D; Mann RP; Wilson AM; Hailes S; Morton AJ; Sumpter DJ; King AJ
    J R Soc Interface; 2014 Nov; 11(100):20140719. PubMed ID: 25165603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An autonomous mobile robot path planning strategy using an enhanced slime mold algorithm.
    Zheng L; Hong C; Song H; Chen R
    Front Neurorobot; 2023; 17():1270860. PubMed ID: 37915952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges.
    Ravankar A; Ravankar AA; Kobayashi Y; Hoshino Y; Peng CC
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ITC: Infused Tangential Curves for Smooth 2D and 3D Navigation of Mobile Robots
    Ravankar A; Ravankar AA; Rawankar A; Hoshino Y; Kobayashi Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Collection and Transport of Objects: A Biomimetic Process.
    Strömbom D; King AJ
    Front Robot AI; 2018; 5():48. PubMed ID: 33500933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm.
    Sun Y; Wang W; Xu M; Huang L; Shi K; Zou C; Chen B
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path Planning for Wheeled Mobile Robot in Partially Known Uneven Terrain.
    Zhang B; Li G; Zheng Q; Bai X; Ding Y; Khan A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm.
    Long H; Li G; Zhou F; Chen T
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning.
    Cao Y; Ni K; Kawaguchi T; Hashimoto S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path Planning for Obstacle Avoidance of Robot Arm Based on Improved Potential Field Method.
    Xia X; Li T; Sang S; Cheng Y; Ma H; Zhang Q; Yang K
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-UAV Path Planning Algorithm Based on BINN-HHO.
    Li S; Zhang R; Ding Y; Qin X; Han Y; Zhang H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network.
    Narayanan KL; Krishnan RS; Son LH; Tung NT; Julie EG; Robinson YH; Kumar R; Gerogiannis VC
    Multimed Tools Appl; 2022; 81(3):3297-3325. PubMed ID: 34345198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic 3D Point-Cloud-Driven Autonomous Hierarchical Path Planning for Quadruped Robots.
    Zhang Q; Li R; Sun J; Wei L; Huang J; Tan Y
    Biomimetics (Basel); 2024 Apr; 9(5):. PubMed ID: 38786469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal intelligent logistics robot combining 3D CNN, LSTM, and visual SLAM for path planning and control.
    Han Z
    Front Neurorobot; 2023; 17():1285673. PubMed ID: 37908407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.