These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38942801)

  • 1. Atmospheric pressure microwave (915 MHz) plasma for hydrogen production from steam reforming of ethanol.
    Miotk R; Hrycak B; Czylkowski D; Jasiński M; Dors M; Mizeraczyk J
    Sci Rep; 2024 Jun; 14(1):14959. PubMed ID: 38942801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production from Ethanol Reforming by a Microwave Discharge Using Air as a Working Gas.
    Guo W; Zheng X; Qin Z; Guo Q; Liu L
    ACS Omega; 2021 Dec; 6(49):33533-33541. PubMed ID: 34926902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production by the steam reforming of synthetic biogas in atmospheric-pressure microwave (915 MHz) plasma.
    Hrycak B; Mizeraczyk J; Czylkowski D; Dors M; Budnarowska M; Jasiński M
    Sci Rep; 2023 Feb; 13(1):2204. PubMed ID: 36750627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Water Content on Ethanol Steam Reforming in the Nonthermal Plasma.
    Ulejczyk B; Nogal Ł; Młotek M; Krawczyk K
    ACS Omega; 2023 Mar; 8(11):10119-10125. PubMed ID: 36969476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].
    Sun B; Wang B; Zhu XM; Yan ZY; Liu YJ; Liu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):823-6. PubMed ID: 27400531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor.
    Vecten S; Wilkinson M; Bimbo N; Dawson R; Herbert BMJ
    Bioresour Technol; 2021 Oct; 337():125324. PubMed ID: 34116283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.
    Wu C; Williams PT
    Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new 915 MHz coaxial-line-based microwave plasma source.
    Miotk R; Mizeraczyk J; Jasiński M
    Sci Rep; 2024 Jul; 14(1):15474. PubMed ID: 38969672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis on production of bioethanol for hydrogen generation.
    Palanisamy A; Soundarrajan N; Ramasamy G
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63690-63705. PubMed ID: 34050510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
    Wu C; Williams PT
    Environ Sci Technol; 2010 Aug; 44(15):5993-8. PubMed ID: 20597551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.
    Lin YC; Wu TY; Jhang SR; Yang PM; Hsiao YH
    Bioresour Technol; 2014 Jun; 161():304-9. PubMed ID: 24721492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst.
    Chen LC; Cheng H; Chiang CW; Lin SD
    ChemSusChem; 2015 May; 8(10):1787-93. PubMed ID: 25876558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
    Tippawan P; Arpornwichanop A
    Bioresour Technol; 2014 Apr; 157():231-9. PubMed ID: 24561628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen.
    Shagdar E; Lougou BG; Shuai Y; Ganbold E; Chinonso OP; Tan H
    RSC Adv; 2020 Mar; 10(21):12582-12597. PubMed ID: 35497614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photobiohydrogen Production and Strategies for H
    Khetkorn W; Raksajit W; Maneeruttanarungroj C; Lindblad P
    Adv Biochem Eng Biotechnol; 2023; 183():253-279. PubMed ID: 37009974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of H
    Shi K; Yan J; Menéndez JA; Luo X; Yang G; Chen Y; Lester E; Wu T
    Front Chem; 2020; 8():3. PubMed ID: 32039161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.
    Homsi D; Rached JA; Aouad S; Gennequin C; Dahdah E; Estephane J; Tidahy HL; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9907-9913. PubMed ID: 27552997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming.
    Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.