These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38942801)

  • 21. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars.
    Kong G; Wang K; Zhang X; Li J; Han L; Zhang X
    Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving hydrogen-rich gas production from biomass catalytic steam gasification over metal-doping porous biochar.
    Kong G; Liu Q; Ji G; Jia H; Cao T; Zhang X; Han L
    Bioresour Technol; 2023 Nov; 387():129662. PubMed ID: 37573983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-driven hydrogen production (MDHP) from water and activated carbons (ACs). Application to wastewaters and seawater.
    Horikoshi S; Takahashi L; Sueishi K; Tanizawa H; Serpone N
    RSC Adv; 2021 Sep; 11(50):31590-31600. PubMed ID: 35496829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.
    Ho GS; Faizal HM; Ani FN
    Waste Manag; 2017 Nov; 69():423-430. PubMed ID: 28811144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tungsten-needle intensifies microwave-sustained plasma accelerating direct H
    Zhang B; Song Z; Pang Y; Zhang X; Zhang J; Mao Y; Zhao X; Sun J; Wang W
    J Hazard Mater; 2024 Oct; 478():135487. PubMed ID: 39141947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon emission reduction and hydrogen production maximization from carbon emission-based hydrogen sources.
    Abifarin JK; Abifarin FB
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 38995336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrified methane steam reforming on a washcoated SiSiC foam for low-carbon hydrogen production.
    Zheng L; Ambrosetti M; Marangoni D; Beretta A; Groppi G; Tronconi E
    AIChE J; 2023 Jan; 69(1):e17620. PubMed ID: 37034314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process Optimization of Wood Particles Microwave Pyrolysis with Combined Production of Bio-Oil and Syngas.
    Wu S; Chen B; Song Y; Wang X; Zhang B; Zhao L; Qiao K
    J Oleo Sci; 2020 Jun; 69(6):649-657. PubMed ID: 32378554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.
    Yoshida H; Yamaoka R; Arai M
    Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrothermal synthesis of high surface area CuCrO
    Huang RJ; Sakthinathan S; Chiu TW; Dong C
    RSC Adv; 2021 Mar; 11(21):12607-12613. PubMed ID: 35423789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming.
    Wang H; Wang B; Lundin SB; Kong H; Su B; Wang J
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook.
    Azizan MT; Aqsha A; Ameen M; Syuhada A; Klaus H; Abidin SZ; Sher F
    Biomass Convers Biorefin; 2020 Oct; ():1-24. PubMed ID: 33110738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of support on the performance of PtRu-based catalysts in oxidative steam reforming of ethanol to produce hydrogen.
    Tang CW; Liu CH; Yu SW; Wang CB
    Front Chem; 2022; 10():1079214. PubMed ID: 36601553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field.
    Sekine Y; Haraguchi M; Tomioka M; Matsukata M; Kikuchi E
    J Phys Chem A; 2010 Mar; 114(11):3824-33. PubMed ID: 20235604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface Modification of Polycarbonate by an Atmospheric Pressure Argon Microwave Plasma Sheet.
    Czylkowski D; Hrycak B; Sikora A; Moczała-Dusanowska M; Dors M; Jasiński M
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31362428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biohydrogen production through energy efficient surfactant induced microwave pretreatment of macroalgae Ulva reticulata.
    Pugazhendi A; Jamal MT; Jeyakumar RB
    Environ Res; 2023 Nov; 236(Pt 1):116709. PubMed ID: 37479210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.