These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38942913)

  • 1. Competitive protein recruitment in artificial cells.
    van Veldhuisen TW; Verwiel MAM; Novosedlik S; Brunsveld L; van Hest JCM
    Commun Chem; 2024 Jun; 7(1):148. PubMed ID: 38942913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Regulation of Protein-Protein Interactions in Artificial Cells.
    van Veldhuisen TW; Altenburg WJ; Verwiel MAM; Lemmens LJM; Mason AF; Merkx M; Brunsveld L; van Hest JCM
    Adv Mater; 2023 Jul; 35(29):e2300947. PubMed ID: 37027309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex Coacervates as a Promising Vehicle for mRNA Delivery: A Comprehensive Review of Recent Advances and Challenges.
    Forenzo C; Larsen J
    Mol Pharm; 2023 Sep; 20(9):4387-4403. PubMed ID: 37561647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-Mediated Protein Shuttling between Coacervate-Based Artificial Cells.
    Mashima T; van Stevendaal MHME; Cornelissens FRA; Mason AF; Rosier BJHM; Altenburg WJ; Oohora K; Hirayama S; Hayashi T; van Hest JCM; Brunsveld L
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202115041. PubMed ID: 35133040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions.
    Liu X; Mokarizadeh AH; Narayanan A; Mane P; Pandit A; Tseng YM; Tsige M; Joy A
    J Am Chem Soc; 2023 Oct; 145(42):23109-23120. PubMed ID: 37820374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(allylamine)/tripolyphosphate coacervates enable high loading and multiple-month release of weakly amphiphilic anionic drugs: an
    de Silva UK; Brown JL; Lapitsky Y
    RSC Adv; 2018 May; 8(35):19409-19419. PubMed ID: 35540986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling.
    Jin Z; Ling C; Yim W; Chang YC; He T; Li K; Zhou J; Cheng Y; Li Y; Yeung J; Wang R; Fajtová P; Amer L; Mattoussi H; O'Donoghue AJ; Jokerst JV
    ACS Nano; 2023 Sep; 17(17):16980-16992. PubMed ID: 37579082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior.
    Liu W; Deng J; Song S; Sethi S; Walther A
    Commun Chem; 2024 May; 7(1):100. PubMed ID: 38693272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective amide bond formation in redox-active coacervate protocells.
    Wang J; Abbas M; Wang J; Spruijt E
    Nat Commun; 2023 Dec; 14(1):8492. PubMed ID: 38129391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein.
    Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K
    Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Control of Functional Coacervates in Synthetic Cells.
    Nair KS; Radhakrishnan S; Bajaj H
    ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-Exchange Triggered Solidification of Peptide/POM Coacervates for Enhancing the On-Site Underwater Adhesion.
    Ji F; Li Y; Zhao H; Wang X; Li W
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity.
    Cook AB; Gonzalez BD; van Hest JCM
    Biomacromolecules; 2024 Jan; 25(1):425-435. PubMed ID: 38064593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invasion and Defense Interactions between Enzyme-Active Liquid Coacervate Protocells and Living Cells.
    Zhang Y; Liu S; Yao Y; Chen Y; Zhou S; Yang X; Wang K; Liu J
    Small; 2020 Jul; 16(29):e2002073. PubMed ID: 32452628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroprotein Complex Coacervate Based on β-Conglycinin and Lysozyme: Dynamic Protein Exchange, Thermodynamic Mechanism, and Lysozyme Activity.
    Zheng J; Gao Q; Ge G; Wu J; Tang CH; Zhao M; Sun W
    J Agric Food Chem; 2021 Jul; 69(28):7948-7959. PubMed ID: 34240870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.