These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 38943003)
1. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. Fukushima HS; Ikeda T; Ikeda S; Takeda H EMBO Rep; 2024 Aug; 25(8):3300-3323. PubMed ID: 38943003 [TBL] [Abstract][Full Text] [Related]
2. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Fukushima HS; Takeda H; Nakamura R Genome Res; 2023 Apr; 33(4):572-586. PubMed ID: 37117034 [TBL] [Abstract][Full Text] [Related]
3. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Wang C; Liu X; Gao Y; Yang L; Li C; Liu W; Chen C; Kou X; Zhao Y; Chen J; Wang Y; Le R; Wang H; Duan T; Zhang Y; Gao S Nat Cell Biol; 2018 May; 20(5):620-631. PubMed ID: 29686265 [TBL] [Abstract][Full Text] [Related]
4. Atypical heterochromatin organization and replication are rapidly acquired by somatic cells following fusion-mediated reprogramming by mouse ESCs. Brown KE; Bagci H; Soza-Ried J; Fisher AG Cell Cycle; 2013 Oct; 12(20):3253-61. PubMed ID: 24036550 [TBL] [Abstract][Full Text] [Related]
5. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Wang X; Bhandari RK Epigenetics; 2019 Jun; 14(6):611-622. PubMed ID: 31010368 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Ross SE; Vázquez-Marín J; Gert KRB; González-Rajal Á; Dinger ME; Pauli A; Martínez-Morales JR; Bogdanovic O Nucleic Acids Res; 2023 Oct; 51(18):9658-9671. PubMed ID: 37615576 [TBL] [Abstract][Full Text] [Related]
8. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Nicetto D; Zaret KS Curr Opin Genet Dev; 2019 Apr; 55():1-10. PubMed ID: 31103921 [TBL] [Abstract][Full Text] [Related]
9. A model of dynamic stability of H3K9me3 heterochromatin to explain the resistance to reprogramming of differentiated cells. Jehanno C; Flouriot G; Le Goff P; Michel D Biochim Biophys Acta Gene Regul Mech; 2017 Feb; 1860(2):184-195. PubMed ID: 27876670 [TBL] [Abstract][Full Text] [Related]
11. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. Muramatsu D; Singh PB; Kimura H; Tachibana M; Shinkai Y J Biol Chem; 2013 Aug; 288(35):25285-25296. PubMed ID: 23836914 [TBL] [Abstract][Full Text] [Related]
12. The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Ninova M; Godneeva B; Chen YA; Luo Y; Prakash SJ; Jankovics F; Erdélyi M; Aravin AA; Fejes Tóth K Mol Cell; 2020 Feb; 77(3):571-585.e4. PubMed ID: 31901448 [TBL] [Abstract][Full Text] [Related]
13. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Burton A; Brochard V; Galan C; Ruiz-Morales ER; Rovira Q; Rodriguez-Terrones D; Kruse K; Le Gras S; Udayakumar VS; Chin HG; Eid A; Liu X; Wang C; Gao S; Pradhan S; Vaquerizas JM; Beaujean N; Jenuwein T; Torres-Padilla ME Nat Cell Biol; 2020 Jul; 22(7):767-778. PubMed ID: 32601371 [TBL] [Abstract][Full Text] [Related]
14. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation. Singh SK; Bahal R; Rasmussen TP Exp Cell Res; 2020 Oct; 395(2):112216. PubMed ID: 32768498 [TBL] [Abstract][Full Text] [Related]
15. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Torrano J; Al Emran A; Hammerlindl H; Schaider H Clin Epigenetics; 2019 Mar; 11(1):43. PubMed ID: 30850015 [TBL] [Abstract][Full Text] [Related]
16. Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Dong W; Oya E; Zahedi Y; Prasad P; Svensson JP; Lennartsson A; Ekwall K; Durand-Dubief M Sci Rep; 2020 Apr; 10(1):6055. PubMed ID: 32269268 [TBL] [Abstract][Full Text] [Related]
17. The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis. Duval KL; Artis AR; Goll MG Genetics; 2024 Oct; 228(2):. PubMed ID: 39166515 [TBL] [Abstract][Full Text] [Related]
18. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Bao X; Wu H; Zhu X; Guo X; Hutchins AP; Luo Z; Song H; Chen Y; Lai K; Yin M; Xu L; Zhou L; Chen J; Wang D; Qin B; Frampton J; Tse HF; Pei D; Wang H; Zhang B; Esteban MA Cell Res; 2015 Jan; 25(1):80-92. PubMed ID: 25512341 [TBL] [Abstract][Full Text] [Related]
19. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Jih G; Iglesias N; Currie MA; Bhanu NV; Paulo JA; Gygi SP; Garcia BA; Moazed D Nature; 2017 Jul; 547(7664):463-467. PubMed ID: 28682306 [TBL] [Abstract][Full Text] [Related]
20. Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Gessaman JD; Selker EU Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9598-E9607. PubMed ID: 29078403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]