These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38943095)

  • 41. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks.
    Sun X; Xu Y; Zhao W; You T; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5954-5957. PubMed ID: 30441692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis.
    Aurangzeb K
    Sci Prog; 2023; 106(3):368504231201329. PubMed ID: 37743660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection.
    Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic Glaucoma Detection from Stereo Fundus Images.
    Ong EP; Cheng J; Wong DWK; Tay ELT; Teo HY; Grace Loo R; Yip LWL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1540-1543. PubMed ID: 33018285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images.
    Zhu Q; Chen X; Meng Q; Song J; Luo G; Wang M; Shi F; Chen Z; Xiang D; Pan L; Li Z; Zhu W
    Biomed Opt Express; 2021 Oct; 12(10):6529-6544. PubMed ID: 34745754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chákṣu: A glaucoma specific fundus image database.
    Kumar JRH; Seelamantula CS; Gagan JH; Kamath YS; Kuzhuppilly NIR; Vivekanand U; Gupta P; Patil S
    Sci Data; 2023 Feb; 10(1):70. PubMed ID: 36737439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Optic cup and disc segmentation model based on linear attention and dual attention].
    Lan Z; Xie J; Guo Y; Zhang Z; Sun B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):920-927. PubMed ID: 37879921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
    Cheng J; Liu J; Xu Y; Yin F; Wong DW; Tan NM; Tao D; Cheng CY; Aung T; Wong TY
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1019-32. PubMed ID: 23434609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior.
    Zhou W; Yi Y; Gao Y; Dai J
    Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Segmentation technique and dynamic ensemble selection to enhance glaucoma severity detection.
    Zulfira FZ; Suyanto S; Septiarini A
    Comput Biol Med; 2021 Dec; 139():104951. PubMed ID: 34678479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images.
    Septiarini A; Hamdani H; Setyaningsih E; Junirianto E; Utaminingrum F
    Healthc Inform Res; 2023 Apr; 29(2):145-151. PubMed ID: 37190738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples.
    Xu YL; Lu S; Li HX; Li RR
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile.
    MacCormick IJC; Williams BM; Zheng Y; Li K; Al-Bander B; Czanner S; Cheeseman R; Willoughby CE; Brown EN; Spaeth GL; Czanner G
    PLoS One; 2019; 14(1):e0209409. PubMed ID: 30629635
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An adaptive threshold based image processing technique for improved glaucoma detection and classification.
    Issac A; Partha Sarathi M; Dutta MK
    Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis.
    Muramatsu C
    Adv Exp Med Biol; 2020; 1213():121-132. PubMed ID: 32030667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. State-of-the-Art Techniques in Optic Cup and Disc Localization for Glaucoma Diagnosis: Research Results and Issues.
    Balasubramanian K; Ananthamoorthy NP
    Crit Rev Biomed Eng; 2020; 48(1):63-83. PubMed ID: 32749119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optic disc detection based on fully convolutional network and weighted matrix recovery model.
    Wang S; Yu X; Jia W; Chi J; Lv P; Wang J; Wu C
    Med Biol Eng Comput; 2023 Dec; 61(12):3319-3333. PubMed ID: 37668892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Weak label based Bayesian U-Net for optic disc segmentation in fundus images.
    Xiong H; Liu S; Sharan RV; Coiera E; Berkovsky S
    Artif Intell Med; 2022 Apr; 126():102261. PubMed ID: 35346443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optic disc detection and segmentation using saliency mask in retinal fundus images.
    Zaaboub N; Sandid F; Douik A; Solaiman B
    Comput Biol Med; 2022 Nov; 150():106067. PubMed ID: 36150251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.