These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Fluidized bed combustion fly ash as filler in composite polyurethane materials. Kuźnia M; Magiera A; Pielichowska K; Ziąbka M; Benko A; Szatkowski P; Jerzak W Waste Manag; 2019 Jun; 92():115-123. PubMed ID: 31160020 [TBL] [Abstract][Full Text] [Related]
43. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Kim HJ; Jin X; Choi JW Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939 [TBL] [Abstract][Full Text] [Related]
44. Circular Reprocessing of Thermoset Polyurethane Foams. Kim S; Li K; Alsbaiee A; Brutman JP; Dichtel WR Adv Mater; 2023 Oct; 35(41):e2305387. PubMed ID: 37548061 [TBL] [Abstract][Full Text] [Related]
45. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. Lattuati-Derieux A; Thao-Heu S; Lavédrine B J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901 [TBL] [Abstract][Full Text] [Related]
46. Use of Novel Non-Toxic Bismuth Catalyst for the Preparation of Flexible Polyurethane Foam. El Khezraji S; Thakur S; Raihane M; López-Manchado MA; Belachemi L; Verdejo R; Lahcini M Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961011 [TBL] [Abstract][Full Text] [Related]
47. Rapeseed Oil as Feedstock for Bio-Based Thermoset Foams Obtained via Michael Addition Reaction. Kirpluks M; Abolins A; Eihe D; Pomilovskis R; Fridrihsone A Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201783 [TBL] [Abstract][Full Text] [Related]
48. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296 [TBL] [Abstract][Full Text] [Related]
49. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams. Iizuka M; Goto R; Siegkas P; Simpson B; Mansfield N Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671456 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. Shin YC; Kang SH; Lee JH; Kim B; Hong SW; Han DW J Biomater Sci Polym Ed; 2018; 29(7-9):762-774. PubMed ID: 28657493 [TBL] [Abstract][Full Text] [Related]
51. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562 [TBL] [Abstract][Full Text] [Related]
52. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation. Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and Characterization of Flame Retarded Rigid Polyurethane Foams with Different Types of Blowing Agents. Zemła M; Michałowski S; Prociak A Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005146 [TBL] [Abstract][Full Text] [Related]
56. Supercritical Fluid Microcellular Foaming of High-Hardness TPU via a Pressure-Quenching Process: Restricted Foam Expansion Controlled by Matrix Modulus and Thermal Degradation. Chen B; Jiang J; Li Y; Zhou M; Wang Z; Wang L; Zhai W Molecules; 2022 Dec; 27(24):. PubMed ID: 36558060 [TBL] [Abstract][Full Text] [Related]
57. Comprehensive Analysis of the Influence of Expanded Vermiculite on the Foaming Process and Selected Properties of Composite Rigid Polyurethane Foams. Barczewski M; Kurańska M; Sałasińska K; Aniśko J; Szulc J; Szafraniak-Wiza I; Prociak A; Polaczek K; Uram K; Surmacz K; Piasecki A Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433094 [TBL] [Abstract][Full Text] [Related]
58. Cascade Exotherms for Rapidly Producing Hybrid Nonisocyanate Polyurethane Foams from Room Temperature Formulations. Bourguignon M; Grignard B; Detrembleur C J Am Chem Soc; 2024 Jan; 146(1):988-1000. PubMed ID: 38157412 [TBL] [Abstract][Full Text] [Related]
59. Open-Cell Spray Polyurethane Foams Based on Biopolyols from Fruit Seed Oils. Kurańska M; Malewska E; Ożóg H; Sędzimir J; Put A; Kowalik N; Michałowski S; Zemła M; Kucała M; Prociak A Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675064 [TBL] [Abstract][Full Text] [Related]
60. Analysis of the Foaming Window for Thermoplastic Polyurethane with Different Hard Segment Contents. Santiago-Calvo M; Naji H; Bernardo V; Martín-de León J; Saiani A; Villafañe F; Rodríguez-Pérez MÁ Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]