These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38943244)

  • 1. Using electronic health records for clinical pharmacology research: Challenges and considerations.
    Jafari E; Blackman MH; Karnes JH; Van Driest SL; Crawford DC; Choi L; McDonough CW
    Clin Transl Sci; 2024 Jul; 17(7):e13871. PubMed ID: 38943244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INTEGRATING CLINICAL LABORATORY MEASURES AND ICD-9 CODE DIAGNOSES IN PHENOME-WIDE ASSOCIATION STUDIES.
    Verma A; Leader JB; Verma SS; Frase A; Wallace J; Dudek S; Lavage DR; Van Hout CV; Dewey FE; Penn J; Lopez A; Overton JD; Carey DJ; Ledbetter DH; Kirchner HL; Ritchie MD; Pendergrass SA
    Pac Symp Biocomput; 2016; 21():168-79. PubMed ID: 26776183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adult patient access to electronic health records.
    Ammenwerth E; Neyer S; Hörbst A; Mueller G; Siebert U; Schnell-Inderst P
    Cochrane Database Syst Rev; 2021 Feb; 2(2):CD012707. PubMed ID: 33634854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data extraction from electronic health records (EHRs) for quality measurement of the physical therapy process: comparison between EHR data and survey data.
    Scholte M; van Dulmen SA; Neeleman-Van der Steen CW; van der Wees PJ; Nijhuis-van der Sanden MW; Braspenning J
    BMC Med Inform Decis Mak; 2016 Nov; 16(1):141. PubMed ID: 27825333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges.
    Wong A; Plasek JM; Montecalvo SP; Zhou L
    Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in replicating secondary analysis of electronic health records data with multiple computable phenotypes: A case study on methicillin-resistant Staphylococcus aureus bacteremia infections.
    Jun I; Rich SN; Chen Z; Bian J; Prosperi M
    Int J Med Inform; 2021 Sep; 153():104531. PubMed ID: 34332468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
    Luo Y; Thompson WK; Herr TM; Zeng Z; Berendsen MA; Jonnalagadda SR; Carson MB; Starren J
    Drug Saf; 2017 Nov; 40(11):1075-1089. PubMed ID: 28643174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.
    Banda JM; Callahan A; Winnenburg R; Strasberg HR; Cami A; Reis BY; Vilar S; Hripcsak G; Dumontier M; Shah NH
    Drug Saf; 2016 Jan; 39(1):45-57. PubMed ID: 26446143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Structured Electronic Health Records Data Elements for the Development of Computable Phenotypes to Identify Potential Adverse Events Associated with Intravenous Immunoglobulin Infusion.
    Hurst JH; Brucker A; Zhao C; Driscoll H; Hostetler HP; Phillips M; Rosenberg B; Samsky MD; Smith I; Reller ME; Strouse JJ; Zhou CK; Dores GM; Wong HL; Goldstein BA
    Drug Saf; 2023 Mar; 46(3):309-318. PubMed ID: 36826707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0).
    Jagannatha A; Liu F; Liu W; Yu H
    Drug Saf; 2019 Jan; 42(1):99-111. PubMed ID: 30649735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes.
    Son JH; Xie G; Yuan C; Ena L; Li Z; Goldstein A; Huang L; Wang L; Shen F; Liu H; Mehl K; Groopman EE; Marasa M; Kiryluk K; Gharavi AG; Chung WK; Hripcsak G; Friedman C; Weng C; Wang K
    Am J Hum Genet; 2018 Jul; 103(1):58-73. PubMed ID: 29961570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting research-quality phenotypes from electronic health records to support precision medicine.
    Wei WQ; Denny JC
    Genome Med; 2015; 7(1):41. PubMed ID: 25937834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 13: Mining electronic health records in the genomics era.
    Denny JC
    PLoS Comput Biol; 2012; 8(12):e1002823. PubMed ID: 23300414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.
    Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L
    J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of selected preventable adverse drug events in electronic health records: Toward developing a complexity score.
    Jeon N; Sorokina M; Henriksen C; Staley B; Lipori GP; Winterstein AG
    Am J Health Syst Pharm; 2017 Nov; 74(22):1865-1877. PubMed ID: 29118045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities, Pitfalls, and Alternatives in Adapting Electronic Health Records for Health Services Research.
    Taksler GB; Dalton JE; Perzynski AT; Rothberg MB; Milinovich A; Krieger NI; Dawson NV; Roach MJ; Lewis MD; Einstadter D
    Med Decis Making; 2021 Feb; 41(2):133-142. PubMed ID: 32969760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Health Record Phenotypes for Precision Medicine: Perspectives and Caveats From Treatment of Breast Cancer at a Single Institution.
    Breitenstein MK; Liu H; Maxwell KN; Pathak J; Zhang R
    Clin Transl Sci; 2018 Jan; 11(1):85-92. PubMed ID: 29084368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EHR-BERT: A BERT-based model for effective anomaly detection in electronic health records.
    Niu H; Omitaomu OA; Langston MA; Olama M; Ozmen O; Klasky HB; Laurio A; Ward M; Nebeker J
    J Biomed Inform; 2024 Feb; 150():104605. PubMed ID: 38331082
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.