These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 38943344)
1. Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs. Kang H; Park D; Kim J Nucleic Acids Res; 2024 Aug; 52(14):8595-8608. PubMed ID: 38943344 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas. Hochrein LM; Li H; Pierce NA ACS Synth Biol; 2021 May; 10(5):964-971. PubMed ID: 33930275 [TBL] [Abstract][Full Text] [Related]
3. Switching the activity of Cas12a using guide RNA strand displacement circuits. Oesinghaus L; Simmel FC Nat Commun; 2019 May; 10(1):2092. PubMed ID: 31064995 [TBL] [Abstract][Full Text] [Related]
4. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis. Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560 [TBL] [Abstract][Full Text] [Related]
5. Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology. Hanewich-Hollatz MH; Chen Z; Hochrein LM; Huang J; Pierce NA ACS Cent Sci; 2019 Jul; 5(7):1241-1249. PubMed ID: 31403072 [TBL] [Abstract][Full Text] [Related]
6. Filamentation and restoration of normal growth in Escherichia coli using a combined CRISPRi sgRNA/antisense RNA approach. Mückl A; Schwarz-Schilling M; Fischer K; Simmel FC PLoS One; 2018; 13(9):e0198058. PubMed ID: 30204770 [TBL] [Abstract][Full Text] [Related]
7. Programmable CRISPR-Cas transcriptional activation in bacteria. Ho HI; Fang JR; Cheung J; Wang HH Mol Syst Biol; 2020 Jul; 16(7):e9427. PubMed ID: 32657546 [TBL] [Abstract][Full Text] [Related]
8. Controlling Gene Expression in Mammalian Cells Using Multiplexed Conditional Guide RNAs for Cas12a*. Oesinghaus L; Simmel FC Angew Chem Int Ed Engl; 2021 Oct; 60(44):23894-23902. PubMed ID: 34533878 [TBL] [Abstract][Full Text] [Related]
10. Programmable CRISPR-Cas Repression, Activation, and Computation with Sequence-Independent Targets and Triggers. Jin M; Garreau de Loubresse N; Kim Y; Kim J; Yin P ACS Synth Biol; 2019 Jul; 8(7):1583-1589. PubMed ID: 31290648 [TBL] [Abstract][Full Text] [Related]
11. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Kim G; Kim HJ; Kim K; Kim HJ; Yang J; Seo SW Nat Commun; 2024 Jun; 15(1):5319. PubMed ID: 38909033 [TBL] [Abstract][Full Text] [Related]
12. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli. Byun G; Yang J; Seo SW Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618 [TBL] [Abstract][Full Text] [Related]
13. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Chang Y; Su T; Qi Q; Liang Q Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering. Shukal S; Lim XH; Zhang C; Chen X Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478 [TBL] [Abstract][Full Text] [Related]
15. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Liu Y; Wan X; Wang B Nat Commun; 2019 Aug; 10(1):3693. PubMed ID: 31451697 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of a Conditional Knockout System for Ouellette SP Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977 [No Abstract] [Full Text] [Related]