These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 38943666)
1. High-Valence Cu Induced by Photoelectric Reconstruction for Dynamically Stable Oxygen Evolution Sites. Cai Z; Li L; Ding P; Pang D; Xu M; Xu Z; Kang J; Guo T; Teobaldi G; Wang Z; Liu LM; Guo L J Am Chem Soc; 2024 Jul; 146(28):19295-19302. PubMed ID: 38943666 [TBL] [Abstract][Full Text] [Related]
2. Confining High-Valence Iridium Single Sites onto Nickel Oxyhydroxide for Robust Oxygen Evolution. He Q; Qiao S; Zhou Q; Zhou Y; Shou H; Zhang P; Xu W; Liu D; Chen S; Wu X; Song L Nano Lett; 2022 May; 22(9):3832-3839. PubMed ID: 35451305 [TBL] [Abstract][Full Text] [Related]
3. Crystalline metal phosphide-coated amorphous iron oxide-hydroxide (FeOOH) with oxygen vacancies as highly active and stable oxygen evolution catalyst in alkaline seawater at high current density. Yan W; Shi Z; Feng H; Yu J; Chen W; Chen Y J Colloid Interface Sci; 2024 Aug; 667():362-370. PubMed ID: 38640655 [TBL] [Abstract][Full Text] [Related]
4. Atomically Dispersed Silver Atoms Embedded in NiCo Layer Double Hydroxide Boost Oxygen Evolution Reaction. He W; Zhang R; Liu H; Hao Q; Li Y; Zheng X; Liu C; Zhang J; Xin HL Small; 2023 Aug; 19(34):e2301610. PubMed ID: 37093206 [TBL] [Abstract][Full Text] [Related]
5. Molybdenum-iron-cobalt oxyhydroxide with rich oxygen vacancies for the oxygen evolution reaction. Zhang Y; Gu Z; Bi J; Jiao Y Nanoscale; 2022 Aug; 14(30):10873-10879. PubMed ID: 35843210 [TBL] [Abstract][Full Text] [Related]
6. Tracking the Role of Defect Types in Co Zhang R; Pan L; Guo B; Huang ZF; Chen Z; Wang L; Zhang X; Guo Z; Xu W; Loh KP; Zou JJ J Am Chem Soc; 2023 Feb; 145(4):2271-2281. PubMed ID: 36654479 [TBL] [Abstract][Full Text] [Related]
7. High-Valence Nickel Single-Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Li Y; Wu ZS; Lu P; Wang X; Liu W; Liu Z; Ma J; Ren W; Jiang Z; Bao X Adv Sci (Weinh); 2020 Mar; 7(5):1903089. PubMed ID: 32154084 [TBL] [Abstract][Full Text] [Related]
8. Scaled-Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Duan Y; Yu ZY; Hu SJ; Zheng XS; Zhang CT; Ding HH; Hu BC; Fu QQ; Yu ZL; Zheng X; Zhu JF; Gao MR; Yu SH Angew Chem Int Ed Engl; 2019 Oct; 58(44):15772-15777. PubMed ID: 31419007 [TBL] [Abstract][Full Text] [Related]
9. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Zhuang L; Ge L; Yang Y; Li M; Jia Y; Yao X; Zhu Z Adv Mater; 2017 May; 29(17):. PubMed ID: 28240388 [TBL] [Abstract][Full Text] [Related]
10. Transition-metal single atoms embedded into defective BC Zhou Y; Gao G; Chu W; Wang LW Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443 [TBL] [Abstract][Full Text] [Related]
11. In Situ Reconstructed Zn doped Fe Zhang X; Yi H; Jin M; Lian Q; Huang Y; Ai Z; Huang R; Zuo Z; Tang C; Amini A; Jia F; Song S; Cheng C Small; 2022 Sep; 18(37):e2203710. PubMed ID: 35961949 [TBL] [Abstract][Full Text] [Related]
12. Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation. Fan K; Zou H; Ding Y; Dharanipragada NVRA; Fan L; Inge AK; Duan L; Zhang B; Sun L Small; 2022 Apr; 18(13):e2107249. PubMed ID: 35119186 [TBL] [Abstract][Full Text] [Related]
13. In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density. Li D; Xiang R; Yu F; Zeng J; Zhang Y; Zhou W; Liao L; Zhang Y; Tang D; Zhou H Adv Mater; 2024 Feb; 36(5):e2305685. PubMed ID: 37747155 [TBL] [Abstract][Full Text] [Related]
14. Electronic Modulation of the 3D Architectured Ni/Fe Oxyhydroxide Anchored N-Doped Carbon Aerogel with Much Improved OER Activity. Lu J; Hao W; Wu X; Shen X; Cui S; Shi W Gels; 2023 Feb; 9(3):. PubMed ID: 36975639 [TBL] [Abstract][Full Text] [Related]
15. Accelerating structure reconstruction to form NiOOH in metal-organic frameworks (MOFs) for boosting the oxygen evolution reaction. Hou R; Yang X; Su L; Cen W; Ye L; Sun D Nanoscale; 2023 Nov; 15(46):18858-18863. PubMed ID: 37966341 [TBL] [Abstract][Full Text] [Related]
16. Tuning Dynamically Formed Active Phases and Catalytic Mechanisms of Chala SA; Tsai MC; Olbasa BW; Lakshmanan K; Huang WH; Su WN; Liao YF; Lee JF; Dai H; Hwang BJ ACS Nano; 2021 Sep; 15(9):14996-15006. PubMed ID: 34515484 [TBL] [Abstract][Full Text] [Related]
17. Wang Y; Yu J; Wang Y; Chen Z; Dong L; Cai R; Hong M; Long X; Yang S RSC Adv; 2020 Jun; 10(39):23321-23330. PubMed ID: 35520306 [TBL] [Abstract][Full Text] [Related]
18. Amorphous Nanocages of Cu-Ni-Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution. Cai Z; Li L; Zhang Y; Yang Z; Yang J; Guo Y; Guo L Angew Chem Int Ed Engl; 2019 Mar; 58(13):4189-4194. PubMed ID: 30672090 [TBL] [Abstract][Full Text] [Related]
19. N/P-doped NiFeV oxide nanosheets with oxygen vacancies as an efficient electrocatalyst for the oxygen evolution reaction. Zhang J; Ma Z; Wang L; Ni H; Yu J; Zhao B Dalton Trans; 2024 May; 53(20):8756-8763. PubMed ID: 38712573 [TBL] [Abstract][Full Text] [Related]
20. Turning Electrocatalytic Activity Sites for the Oxygen Evolution Reaction on Brownmillerite to Oxyhydroxide. Song S; Mu L; Jiang Y; Sun J; Zhang Y; Shi G; Sun H ACS Appl Mater Interfaces; 2022 Oct; 14(42):47560-47567. PubMed ID: 36240505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]