These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38943912)

  • 1. Modulating lipid bilayer permeability and structure: Impact of hydrophobic chain length, C-3 hydroxyl group, and double bond in sphingosine.
    Mu Y; Wang Z; Song L; Ma K; Chen Y; Li P; Yan Z
    J Colloid Interface Sci; 2024 Nov; 674():513-526. PubMed ID: 38943912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators.
    Watanabe C; Puff N; Staneva G; Seigneuret M; Angelova MI
    Langmuir; 2014 Nov; 30(46):13956-63. PubMed ID: 25386673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid molecule headgroup mismatch on non steroidal anti-inflammatory drugs induced membrane fusion.
    Mondal Roy S; Sarkar M
    Langmuir; 2011 Dec; 27(24):15054-64. PubMed ID: 21999838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane permeabilization induced by sphingosine: effect of negatively charged lipids.
    Jiménez-Rojo N; Sot J; Viguera AR; Collado MI; Torrecillas A; Gómez-Fernández JC; Goñi FM; Alonso A
    Biophys J; 2014 Jun; 106(12):2577-84. PubMed ID: 24940775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of the anticancer drug tamoxifen with lipid membranes.
    Khadka NK; Cheng X; Ho CS; Katsaras J; Pan J
    Biophys J; 2015 May; 108(10):2492-2501. PubMed ID: 25992727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How type II diabetes-related islet amyloid polypeptide damages lipid bilayers.
    Lee CC; Sun Y; Huang HW
    Biophys J; 2012 Mar; 102(5):1059-68. PubMed ID: 22404928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.
    Janosi L; Gorfe A
    Biophys J; 2010 Nov; 99(9):2957-66. PubMed ID: 21044593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical properties of sphingosine, ceramides and other simple sphingolipids.
    Goñi FM; Sot J; Alonso A
    Biochem Soc Trans; 2014 Oct; 42(5):1401-8. PubMed ID: 25233422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties.
    Carreira AC; de Almeida RFM; Silva LC
    Sci Rep; 2017 Jun; 7(1):3949. PubMed ID: 28638081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-destabilizing properties of C2-ceramide may be responsible for its ability to inhibit platelet aggregation.
    Simon CG; Gear AR
    Biochemistry; 1998 Feb; 37(7):2059-69. PubMed ID: 9485333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid aggregation on lipid bilayers and its impact on membrane permeability.
    Friedman R; Pellarin R; Caflisch A
    J Mol Biol; 2009 Mar; 387(2):407-15. PubMed ID: 19133272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study.
    Orioni B; Bocchinfuso G; Kim JY; Palleschi A; Grande G; Bobone S; Park Y; Kim JI; Hahm KS; Stella L
    Biochim Biophys Acta; 2009 Jul; 1788(7):1523-33. PubMed ID: 19397893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of the membrane permeability barrier by annexins.
    Creutz CE; Hira JK; Gee VE; Eaton JM
    Biochemistry; 2012 Dec; 51(50):9966-83. PubMed ID: 23190562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics.
    Školová B; Kováčik A; Tesař O; Opálka L; Vávrová K
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):824-834. PubMed ID: 28109750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9.
    Caillon L; Killian JA; Lequin O; Khemtémourian L
    PLoS One; 2013; 8(10):e75528. PubMed ID: 24146759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopores/membrane proteins in synthetic polymer membranes.
    Garni M; Thamboo S; Schoenenberger CA; Palivan CG
    Biochim Biophys Acta Biomembr; 2017 Apr; 1859(4):619-638. PubMed ID: 27984019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.