These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38943984)
21. Cross-Subject Motor Imagery Decoding by Transfer Learning of Tactile ERD. Zhong Y; Yao L; Pan G; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2024; 32():662-671. PubMed ID: 38271166 [TBL] [Abstract][Full Text] [Related]
22. An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model. Hashem HA; Abdulazeem Y; Labib LM; Elhosseini MA; Shehata M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991884 [TBL] [Abstract][Full Text] [Related]
23. Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts. Kim HH; Jeong J Comput Biol Med; 2019 Jul; 110():254-264. PubMed ID: 31233971 [TBL] [Abstract][Full Text] [Related]
24. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding. Wu X; Lin DT; Chen R; Bhattacharyya SS J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288 [No Abstract] [Full Text] [Related]
25. Online continual decoding of streaming EEG signal with a balanced and informative memory buffer. Duan T; Wang Z; Li F; Doretto G; Adjeroh DA; Yin Y; Tao C Neural Netw; 2024 Aug; 176():106338. PubMed ID: 38692190 [TBL] [Abstract][Full Text] [Related]
26. Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks. Kwon OY; Lee MH; Guan C; Lee SW IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3839-3852. PubMed ID: 31725394 [TBL] [Abstract][Full Text] [Related]
27. [A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy]. Zhang Y; Liu D; Gao F Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):673-683. PubMed ID: 39218592 [TBL] [Abstract][Full Text] [Related]
28. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056 [TBL] [Abstract][Full Text] [Related]
29. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding. Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048 [TBL] [Abstract][Full Text] [Related]
30. Multi-subject classification of Motor Imagery EEG signals using transfer learning in neural networks. Solorzano-Espindola CE; Zamora E; Sossa H Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1006-1009. PubMed ID: 34891458 [TBL] [Abstract][Full Text] [Related]
31. A systematic evaluation of Euclidean alignment with deep learning for EEG decoding. Junqueira B; Aristimunha B; Chevallier S; de Camargo RY J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38776898 [No Abstract] [Full Text] [Related]
32. Learning a common dictionary for subject-transfer decoding with resting calibration. Morioka H; Kanemura A; Hirayama J; Shikauchi M; Ogawa T; Ikeda S; Kawanabe M; Ishii S Neuroimage; 2015 May; 111():167-78. PubMed ID: 25682943 [TBL] [Abstract][Full Text] [Related]
33. Benefits of deep learning classification of continuous noninvasive brain-computer interface control. Stieger JR; Engel SA; Suma D; He B J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873 [No Abstract] [Full Text] [Related]
34. Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization. Xu L; Xu M; Ma Z; Wang K; Jung TP; Ming D J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34407522 [No Abstract] [Full Text] [Related]
35. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Schwemmer MA; Skomrock ND; Sederberg PB; Ting JE; Sharma G; Bockbrader MA; Friedenberg DA Nat Med; 2018 Nov; 24(11):1669-1676. PubMed ID: 30250141 [TBL] [Abstract][Full Text] [Related]
36. Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals. Pan L; Wang K; Xu L; Sun X; Yi W; Xu M; Ming D J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37931299 [No Abstract] [Full Text] [Related]
37. Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training. Xie Y; Wang K; Meng J; Yue J; Meng L; Yi W; Jung TP; Xu M; Ming D J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37774694 [TBL] [Abstract][Full Text] [Related]
38. Portable deep-learning decoder for motor imaginary EEG signals based on a novel compact convolutional neural network incorporating spatial-attention mechanism. Wu Z; Tang X; Wu J; Huang J; Shen J; Hong H Med Biol Eng Comput; 2023 Sep; 61(9):2391-2404. PubMed ID: 37095297 [TBL] [Abstract][Full Text] [Related]
39. Leveraging anatomical information to improve transfer learning in brain-computer interfaces. Wronkiewicz M; Larson E; Lee AK J Neural Eng; 2015 Aug; 12(4):046027. PubMed ID: 26169961 [TBL] [Abstract][Full Text] [Related]
40. Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI. Jeon E; Ko W; Yoon JS; Suk HI IEEE Trans Neural Netw Learn Syst; 2023 Feb; 34(2):739-749. PubMed ID: 34357871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]