These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38944032)

  • 1. msproteomics sitereport: reporting DIA-MS phosphoproteomics experiments at site level with ease.
    Pham TV; Henneman AA; Truong NX; Jimenez CR
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38944032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics.
    Pham TV; Henneman AA; Jimenez CR
    Bioinformatics; 2020 Apr; 36(8):2611-2613. PubMed ID: 31909781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonormalizer: an R package for normalization of MS-based label-free phosphoproteomics.
    Saraei S; Suomi T; Kauko O; Elo LL; Stegle O
    Bioinformatics; 2018 Feb; 34(4):693-694. PubMed ID: 28968644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calib-RT: an open source python package for peptide retention time calibration in DIA mass spectrometry data.
    Zhang Y; Hu C; Wu X; Song J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38960865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries.
    Bekker-Jensen DB; Bernhardt OM; Hogrebe A; Martinez-Val A; Verbeke L; Gandhi T; Kelstrup CD; Reiter L; Olsen JV
    Nat Commun; 2020 Feb; 11(1):787. PubMed ID: 32034161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut.
    Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV
    Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances and challenges in plant phosphoproteomics.
    Silva-Sanchez C; Li H; Chen S
    Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics.
    Tong M; Liu Z; Li J; Wei X; Shi W; Liang C; Yu C; Huang R; Lin Y; Wang X; Wang S; Wang Y; Huang J; Wang Y; Li T; Qin J; Zhan D; Ji ZL
    Comput Biol Med; 2024 May; 174():108391. PubMed ID: 38613887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization.
    Sing JC; Charkow J; AlHigaylan M; Horecka I; Xu L; Röst HL
    J Proteome Res; 2024 Jun; 23(6):2306-2314. PubMed ID: 38684072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Parameters for Confident Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid Mass Spectrometer.
    Ferries S; Perkins S; Brownridge PJ; Campbell A; Eyers PA; Jones AR; Eyers CE
    J Proteome Res; 2017 Sep; 16(9):3448-3459. PubMed ID: 28741359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics.
    Isaksson M; Karlsson C; Laurell T; Kirkeby A; Heusel M
    J Proteome Res; 2022 Feb; 21(2):535-546. PubMed ID: 35042333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-Analysis of Rice Phosphoproteomics Data to Understand Variation in Cell Signaling Across the Rice Pan-Genome.
    Ramsbottom KA; Prakash A; Perez-Riverol Y; Camacho OM; Sun Z; Kundu DJ; Bowler-Barnett E; Martin M; Fan J; Chebotarov D; McNally KL; Deutsch EW; Vizcaíno JA; Jones AR
    J Proteome Res; 2024 Jul; 23(7):2518-2531. PubMed ID: 38810119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics.
    Lou R; Cao Y; Li S; Lang X; Li Y; Zhang Y; Shui W
    Nat Commun; 2023 Jan; 14(1):94. PubMed ID: 36609502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics.
    Osinalde N; Aloria K; Omaetxebarria MJ; Kratchmarova I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():29-38. PubMed ID: 28441545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.