BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38944097)

  • 21. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia.
    Hernandez-Valladares M; Aasebø E; Selheim F; Berven FS; Bruserud Ø
    Proteomes; 2016 Aug; 4(3):. PubMed ID: 28248234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome.
    Tanca A; Biosa G; Pagnozzi D; Addis MF; Uzzau S
    Proteomics; 2013 Sep; 13(17):2597-607. PubMed ID: 23784971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols.
    Wiśniewski JR
    Anal Chem; 2016 May; 88(10):5438-43. PubMed ID: 27119963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupling suspension trapping-based sample preparation and data-independent acquisition mass spectrometry for sensitive exosomal proteomic analysis.
    Wu C; Zhou S; Mitchell MI; Hou C; Byers S; Loudig O; Ma J
    Anal Bioanal Chem; 2022 Mar; 414(8):2585-2595. PubMed ID: 35181835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sample Preparation for Mass Spectrometry-Based Proteomics; from Proteomes to Peptides.
    Rogers JC; Bomgarden RD
    Adv Exp Med Biol; 2016; 919():43-62. PubMed ID: 27975212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Filter-Aided Sample Preparation: The Versatile and Efficient Method for Proteomic Analysis.
    Wiśniewski JR
    Methods Enzymol; 2017; 585():15-27. PubMed ID: 28109427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparison of Bottom-Up Proteomic Sample Preparation Methods for the Human Parasite
    Mayr AL; Hummel K; Leitsch D; Razzazi-Fazeli E
    ACS Omega; 2024 Feb; 9(8):9782-9791. PubMed ID: 38434803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomics of hydrophobic samples: Fast, robust and low-cost workflows for clinical approaches.
    Pasing Y; Colnoe S; Hansen T
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 27412720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics.
    Shen S; An B; Wang X; Hilchey SP; Li J; Cao J; Tian Y; Hu C; Jin L; Ng A; Tu C; Qu M; Zand MS; Qu J
    Anal Chem; 2018 Sep; 90(17):10350-10359. PubMed ID: 30078316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adding polyvinylpyrrolidone to low level protein samples significantly improves peptide recovery in FASP digests: An inexpensive and simple modification to the FASP protocol.
    Tremblay TL; Hill JJ
    J Proteomics; 2021 Jan; 230():104000. PubMed ID: 33011348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic Profile of EPS-Urine through FASP Digestion and Data-Independent Analysis.
    Prestagiacomo LE; Gabriele C; Morelli P; Rota MA; Alba S; Cuda G; Damiano R; Gaspari M
    J Vis Exp; 2021 May; (171):. PubMed ID: 34028441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Proteome Coverage and Sample Recovery with Enhanced FASP (eFASP) for Quantitative Proteomic Experiments.
    Erde J; Loo RR; Loo JA
    Methods Mol Biol; 2017; 1550():11-18. PubMed ID: 28188519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics.
    Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S
    mSystems; 2024 Jun; ():e0066124. PubMed ID: 38934547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows.
    Aasebø E; Mjaavatten O; Vaudel M; Farag Y; Selheim F; Berven F; Bruserud Ø; Hernandez-Valladares M
    J Proteomics; 2016 Aug; 145():214-225. PubMed ID: 27107777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis.
    León IR; Schwämmle V; Jensen ON; Sprenger RR
    Mol Cell Proteomics; 2013 Oct; 12(10):2992-3005. PubMed ID: 23792921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome.
    Lin Y; Wang K; Liu Z; Lin H; Yu L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Oct; 1002():144-51. PubMed ID: 26319803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Sample Preparation Strategies for Human Milk and Plasma Proteomics.
    Milkovska-Stamenova S; Wölk M; Hoffmann R
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bottom-Up Proteomics: Advancements in Sample Preparation.
    Duong VA; Lee H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of a sample preparation method assisted by sodium deoxycholate for mass-spectrometry-based shotgun membrane proteomics.
    Lin Y; Lin H; Liu Z; Wang K; Yan Y
    J Sep Sci; 2014 Nov; 37(22):3321-9. PubMed ID: 25196059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of SPEED, S-Trap, and In-Solution-Based Sample Preparation Methods for Mass Spectrometry in Kidney Tissue and Plasma.
    Templeton EM; Pilbrow AP; Kleffmann T; Pickering JW; Rademaker MT; Scott NJA; Ellmers LJ; Charles CJ; Endre ZH; Richards AM; Cameron VA; Lassé M
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.