These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38944644)

  • 1. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane.
    Li Y; Liu X; Wu T; Zhang X; Han H; Liu X; Chen Y; Tang Z; Liu Z; Zhang Y; Liu H; Zhao L; Ma D; Zhou W
    Nat Commun; 2024 Jun; 15(1):5495. PubMed ID: 38944644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural evolution of Mo
    Kurlov A; Stoian D; Baghizadeh A; Kountoupi E; Deeva EB; Willinger M; Abdala PM; Fedorov A; Müller CR
    Catal Sci Technol; 2022 Sep; 12(18):5620-5628. PubMed ID: 36275487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum carbide and oxycarbide from carbon-supported MoO
    Kurlov A; Huang X; Deeva EB; Abdala PM; Fedorov A; Müller CR
    Nanoscale; 2020 Jun; 12(24):13086-13094. PubMed ID: 32542244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane.
    Kurlov A; Deeva EB; Abdala PM; Lebedev D; Tsoukalou A; Comas-Vives A; Fedorov A; Müller CR
    Nat Commun; 2020 Oct; 11(1):4920. PubMed ID: 33009379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism.
    Xiong H; Dong Y; Hu C; Chen Y; Liu H; Long R; Kong T; Xiong Y
    J Am Chem Soc; 2024 Apr; 146(13):9465-9475. PubMed ID: 38507822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field.
    Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y
    RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Oxygen Surface Coverage and Carbidic Carbon on the Activity and Selectivity of Two-Dimensional Molybdenum Carbide (2D-Mo
    Kountoupi E; Barrios AJ; Chen Z; Müller CR; Ordomsky VV; Comas-Vives A; Fedorov A
    ACS Catal; 2024 Feb; 14(3):1834-1845. PubMed ID: 38327645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO
    Yao Y; Li B; Gao X; Yang Y; Yu J; Lei J; Li Q; Meng X; Chen L; Xu D
    Adv Mater; 2023 Sep; 35(39):e2303654. PubMed ID: 37314337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction.
    Hussien AGS; Polychronopoulou K
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Induced Redox Looping of a Rhodium/Ce
    Yang Y; Chai Z; Qin X; Zhang Z; Muhetaer A; Wang C; Huang H; Yang C; Ma D; Li Q; Xu D
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202200567. PubMed ID: 35277912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System.
    Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study.
    Albano M; Madeira LM; Miguel CV
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane.
    Shamsuddin MR; Teo SH; Azmi TSMT; Lahuri AH; Taufiq-Yap YH
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38635095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting dry reforming of methane
    Shamsuddin MR; Asikin-Mijan N; Marliza TS; Miyamoto M; Uemiya S; Yarmo MA; Taufiq-Yap YH
    RSC Adv; 2021 Feb; 11(12):6667-6681. PubMed ID: 35423191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into methane dry reforming over cobalt: a density functional theory study.
    Huang H; Yu Y; Zhang M
    Phys Chem Chem Phys; 2020 Dec; 22(46):27320-27331. PubMed ID: 33230515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.
    Joo S; Kim K; Kwon O; Oh J; Kim HJ; Zhang L; Zhou J; Wang JQ; Jeong HY; Han JW; Kim G
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15912-15919. PubMed ID: 33961725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.