These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38945119)

  • 21. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure.
    Stadelmann MA; Schenk DE; Maquer G; Lenherr C; Buck FM; Bosshardt DD; Hoppe S; Theumann N; Alkalay RN; Zysset PK
    Bone; 2020 Dec; 141():115598. PubMed ID: 32829037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions.
    Chen SI; Lin RM; Chang CH
    Med Eng Phys; 2003 May; 25(4):275-82. PubMed ID: 12649011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D pull-out finite element simulation of the pedicle screw-trabecular bone interface at strain rates.
    Çetin A; Bircan DA
    Proc Inst Mech Eng H; 2022 Jan; 236(1):134-144. PubMed ID: 34479459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How a pilot hole size affects osteosynthesis at the screw-bone interface under immediate loading.
    Affes F; Ketata H; Kharrat M; Dammak M
    Med Eng Phys; 2018 Oct; 60():14-22. PubMed ID: 30061066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials.
    Einafshar M; Hashemi A; van Lenthe GH
    Comput Methods Programs Biomed; 2021 Apr; 202():105966. PubMed ID: 33662802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biomechanical study of the cortex-anchorage vertebral screw.
    Lin LC; Chen HH; Sun SP
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S25-32. PubMed ID: 12828911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-linear explicit micro-FE models accurately predict axial pull-out force of cortical screws in human tibial cortical bone.
    Ovesy M; Silva-Henao JD; Fletcher JWA; Gueorguiev B; Zysset PK; Varga P
    J Mech Behav Biomed Mater; 2022 Feb; 126():105002. PubMed ID: 34894498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screw angulation affects bone-screw stresses and bone graft load sharing in anterior cervical corpectomy fusion with a rigid screw-plate construct: a finite element model study.
    Hussain M; Natarajan RN; Fayyazi AH; Braaksma BR; Andersson GB; An HS
    Spine J; 2009 Dec; 9(12):1016-23. PubMed ID: 19819193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the Inelastic Behaviour of Radius Segments: Damage-based Nonlinear Micro Finite Element Simulation vs Pistoia Criterion.
    Stipsitz M; Zysset PK; Pahr DH
    J Biomech; 2021 Feb; 116():110205. PubMed ID: 33476984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.
    Stipsitz M; Zysset PK; Pahr DH
    Biomech Model Mechanobiol; 2020 Jun; 19(3):861-874. PubMed ID: 31749070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of screw torque, object radius of curvature, mode of bone plate application and bone plate design on bone-plate interface mechanics.
    Field JR; Hearn TC; Caldwell CB
    Injury; 1998 Apr; 29(3):233-41. PubMed ID: 9709428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius.
    Schenk D; Zysset P
    Biomech Model Mechanobiol; 2023 Apr; 22(2):453-466. PubMed ID: 36477423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabric-elasticity relationships of tibial trabecular bone are similar in osteogenesis imperfecta and healthy individuals.
    Simon M; Indermaur M; Schenk D; Hosseinitabatabaei S; Willie BM; Zysset P
    Bone; 2022 Feb; 155():116282. PubMed ID: 34896360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of aging on mechanical properties of the femoral neck using an inverse method.
    Voumard B; Stefanek P; Pretterklieber M; Pahr D; Zysset P
    Bone Rep; 2022 Dec; 17():101638. PubMed ID: 36407416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: Evaluations and comparison to experiments.
    Synek A; Chevalier Y; Baumbach SF; Pahr DH
    J Biomech; 2015 Nov; 48(15):4116-4123. PubMed ID: 26542787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. μFEA successfully exhibits higher stresses and strains in microdamaged regions of whole vertebrae.
    Herblum R; Beek M; Whyne CM
    J Orthop Res; 2013 Oct; 31(10):1653-60. PubMed ID: 23737260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness.
    Xie J; Rittel D; Shemtov-Yona K; Shah FA; Palmquist A
    Acta Biomater; 2021 Sep; 131():415-423. PubMed ID: 34129958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.