These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38945142)

  • 41. Cervical Spinal Cord Injury without Computed Tomography Evidence of Trauma in Adults: Magnetic Resonance Imaging Prognostic Factors.
    Martinez-Perez R; Munarriz PM; Paredes I; Cotrina J; Lagares A
    World Neurosurg; 2017 Mar; 99():192-199. PubMed ID: 27979630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of conventional T
    Berliner JC; O'Dell DR; Albin SR; Dungan D; Sevigny M; Elliott JM; Weber KA; Abdie DR; Anderson JS; Rich AA; Seib CA; Sagan HGS; Smith AC
    J Spinal Cord Med; 2023 May; 46(3):501-507. PubMed ID: 33798025
    [No Abstract]   [Full Text] [Related]  

  • 43. Comparison of neurological and functional outcomes after administration of granulocyte-colony-stimulating factor in motor-complete versus motor-incomplete postrehabilitated, chronic spinal cord injuries: a phase I/II study.
    Saberi H; Derakhshanrad N; Yekaninejad MS
    Cell Transplant; 2014; 23 Suppl 1():S19-23. PubMed ID: 25302604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soft-tissue damage and segmental instability in adult patients with cervical spinal cord injury without major bone injury.
    Maeda T; Ueta T; Mori E; Yugue I; Kawano O; Takao T; Sakai H; Okada S; Shiba K
    Spine (Phila Pa 1976); 2012 Dec; 37(25):E1560-6. PubMed ID: 22972511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury.
    Steeves JD; Kramer JK; Fawcett JW; Cragg J; Lammertse DP; Blight AR; Marino RJ; Ditunno JF; Coleman WP; Geisler FH; Guest J; Jones L; Burns S; Schubert M; van Hedel HJ; Curt A;
    Spinal Cord; 2011 Feb; 49(2):257-65. PubMed ID: 20714334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wallerian Degeneration Assessed by Multi-Modal Magnetic Resonance Imaging of Cervical Spinal Cord Is Associated With Neurological Impairment After Spinal Cord Injury.
    Yu H; Liu Z; Pang M; Luo Q; Huang C; He W; Liu B; Rong L
    J Neurotrauma; 2024 May; 41(9-10):1240-1252. PubMed ID: 38204213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is the outcome in acute spinal cord ischaemia different from that in traumatic spinal cord injury? A cross-sectional analysis of the neurological and functional outcome in a cohort of 93 paraplegics.
    Pouw MH; Hosman AJ; van Kampen A; Hirschfeld S; Thietje R; van de Meent H
    Spinal Cord; 2011 Feb; 49(2):307-12. PubMed ID: 20805834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL).
    Kwon SY; Shin JJ; Lee JH; Cho WH
    J Orthop Surg Res; 2015 Jun; 10():94. PubMed ID: 26065682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prognostic factors and optimal management for patients with cervical spinal cord injury without major bone injury.
    Nakajima H; Takahashi A; Kitade I; Watanabe S; Honjoh K; Matsumine A
    J Orthop Sci; 2019 Mar; 24(2):230-236. PubMed ID: 30361169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.
    DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P;
    Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequential neurological improvements after conservative treatment in patients with complete motor paralysis caused by cervical spinal cord injury without bone and disc injury.
    Mori E; Ueta T; Maeda T; Ideta R; Yugué I; Kawano O; Shiba K
    J Neurosurg Spine; 2018 Jul; 29(1):1-9. PubMed ID: 29676669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lateral Corticospinal Tract and Dorsal Column Damage: Predictive Relationships With Motor and Sensory Scores at Discharge From Acute Rehabilitation After Spinal Cord Injury.
    Smith AC; O'Dell DR; Albin SR; Berliner JC; Dungan D; Robinson E; Elliott JM; Carballido-Gamio J; Stevens-Lapsley J; Weber KA
    Arch Phys Med Rehabil; 2022 Jan; 103(1):62-68. PubMed ID: 34371017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Novel Method to Classify Cervical Incomplete Spinal Cord Injury Based on Potential for Recovery: A Group-Based Trajectory Analysis.
    Badhiwala JH; Wilson JR; Kulkarni AV; Kiss A; Harrop JS; Vaccaro AR; Aarabi B; Geisler FH; Fehlings MG
    J Neurotrauma; 2022 Dec; 39(23-24):1654-1664. PubMed ID: 35819296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies.
    Kalsi-Ryan S; Beaton D; Curt A; Popovic MR; Verrier MC; Fehlings MG
    J Spinal Cord Med; 2014 Sep; 37(5):503-10. PubMed ID: 25229734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association of upper-limb neurological recovery with functional outcomes in high cervical spinal cord injury.
    Javeed S; Greenberg JK; Zhang JK; Plog B; Dibble CF; Benedict B; Botterbush K; Khalifeh JM; Wen H; Chen Y; Park Y; Belzberg AJ; Tuffaha S; Burks SS; Levi AD; Zager EL; Faraji AH; Mahan MA; Midha R; Wilson TJ; Juknis N; Ray WZ
    J Neurosurg Spine; 2023 Sep; 39(3):355-362. PubMed ID: 37243549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between motor recovery and independence after sensorimotor-complete cervical spinal cord injury.
    Kramer JL; Lammertse DP; Schubert M; Curt A; Steeves JD
    Neurorehabil Neural Repair; 2012; 26(9):1064-71. PubMed ID: 22647878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial.
    Shapiro S; Borgens R; Pascuzzi R; Roos K; Groff M; Purvines S; Rodgers RB; Hagy S; Nelson P
    J Neurosurg Spine; 2005 Jan; 2(1):3-10. PubMed ID: 15658119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficacy of Ultra-Early (< 12 h), Early (12-24 h), and Late (>24-138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury.
    Aarabi B; Akhtar-Danesh N; Chryssikos T; Shanmuganathan K; Schwartzbauer GT; Simard JM; Olexa J; Sansur CA; Crandall KM; Mushlin H; Kole MJ; Le EJ; Wessell AP; Pratt N; Cannarsa G; Lomangino C; Scarboro M; Aresco C; Oliver J; Caffes N; Carbine S; Mori K
    J Neurotrauma; 2020 Feb; 37(3):448-457. PubMed ID: 31310155
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Faw TD; Lakhani B; Schmalbrock P; Knopp MV; Lohse KR; Kramer JLK; Liu H; Nguyen HT; Phillips EG; Bratasz A; Fisher LC; Deibert RJ; Boyd LA; McTigue DM; Basso DM
    Exp Neurol; 2021 Dec; 346():113853. PubMed ID: 34464653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.