BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38945223)

  • 1. Low-temperature Slow-release Permanganate Gel for Groundwater Remediation: Dynamics in Saturated Porous Media.
    Acheampong E; Lee ES
    Chemosphere; 2024 Jun; ():142716. PubMed ID: 38945223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of colloidal silica-based slow-release permanganate gel (SRP-G): laboratory investigations.
    Lee ES; Gupta N
    Chemosphere; 2014 Aug; 109():195-201. PubMed ID: 24650708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory-scale characterization of slow-release permanganate gel (SRP-G) for the in-situ treatment of chlorinated-solvent groundwater plumes.
    Ogundare O; Tick GR; Esfahani MR; Akyol NH; Zhang Y
    Chemosphere; 2024 Jul; 360():142392. PubMed ID: 38777195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.
    Lee ES; Olson PR; Gupta N; Solpuker U; Schwartz FW; Kim Y
    Chemosphere; 2014 Feb; 97():140-5. PubMed ID: 24331874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics.
    Yang S; Oostrom M; Truex MJ; Li G; Zhong L
    Environ Sci Process Impacts; 2016 Feb; 18(2):256-64. PubMed ID: 26766607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of permanganate oxidation of TCE at low reagent concentrations.
    Woo NC; Hyun SG; Park WW; Lee ES; Schwartz FW
    Environ Technol; 2009 Dec; 30(13):1337-42. PubMed ID: 20088197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.
    Lee ES; Schwartz FW
    Chemosphere; 2007 Feb; 66(11):2058-66. PubMed ID: 17140635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: a pilot-scale flow-tank study.
    Lee ES; Woo NC; Schwartz FW; Lee BS; Lee KC; Woo MH; Kim JH; Kim HK
    Chemosphere; 2008 Mar; 71(5):902-10. PubMed ID: 18207217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and mechanisms of controlled-release KMnO
    Ma Y; Feng Y; Feng Y; Liao G; Sun Y; Ma J
    Water Res; 2020 Mar; 171():115385. PubMed ID: 31855695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene.
    Lee ES; Seol Y; Fang YC; Schwartz FW
    Environ Sci Technol; 2003 Jun; 37(11):2540-6. PubMed ID: 12831041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-releasing permanganate ions from permanganate core-manganese oxide shell particles for the oxidative degradation of an algae odorant in water.
    Omoike AI; Harmon D
    Chemosphere; 2019 May; 223():391-398. PubMed ID: 30797162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents.
    Evans PJ; Dugan P; Nguyen D; Lamar M; Crimi M
    Chemosphere; 2019 Apr; 221():802-811. PubMed ID: 30684778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.
    Lee BS; Kim JH; Lee KC; Kim YB; Schwartz FW; Lee ES; Woo NC; Lee MK
    Chemosphere; 2009 Feb; 74(6):745-50. PubMed ID: 19118857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of the persulfate gel materials and application for the remediation of 2,4-dinitrotoluene contaminated groundwater.
    Xu X; Wan S; Xia F; Han X; Deng S; Xiao H; Jiang Y; Liu H; Yang Y
    Sci Total Environ; 2022 Oct; 843():157023. PubMed ID: 35772545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
    Schroth MH; Oostrom M; Wietsma TW; Istok JD
    J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Feb; 68(3-4):269-87. PubMed ID: 14734249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.
    Yang J; Meng L; Guo L
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.
    de Weert JP; Keijzer TJ; van Gaans PF
    Chemosphere; 2014 Dec; 117():94-103. PubMed ID: 24974015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.