These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38945620)

  • 1. Digestion and absorption characteristics of iron-chelating silver carp scale collagen peptide and insights into their chelation mechanism.
    Zhao Q; Liang W; Xiong Z; Li C; Zhang L; Rong J; Xiong S; Liu R; You J; Yin T; Hu Y
    Food Res Int; 2024 Aug; 190():114612. PubMed ID: 38945620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of in vivo iron bioavailability using mung bean peptide-ferrous chelate.
    Ding X; Xu M; Li H; Li X; Li M
    Food Res Int; 2024 Aug; 190():114602. PubMed ID: 38945571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization.
    Li B; He H; Shi W; Hou T
    J Sci Food Agric; 2019 Mar; 99(4):1834-1841. PubMed ID: 30255570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel antioxidant iron-chelating peptide from yak skin: analysis of the chelating mechanism and digestion stability in vitro.
    Ci X; Liu R; Sun Y; Rifky M; Liu R; Jin Y; Zhu Q; Zhang M; Wu T
    J Sci Food Agric; 2024 Jun; ():. PubMed ID: 38828699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the efficacy of a ferrous-ion-chelating peptide from Alaska pollock frame for the improvement of iron nutritional status in rats.
    Ma X; Liu C; Song W; Che S; Wang C; Feng X; Li B; Dai Y
    Food Funct; 2019 Aug; 10(8):4888-4896. PubMed ID: 31339120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses.
    Qu W; Feng Y; Xiong T; Li Y; Wahia H; Ma H
    Ultrason Sonochem; 2022 Feb; 83():105937. PubMed ID: 35144194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization, and bioavailability evaluation of antioxidant phosvitin peptide-ferrous complex.
    Song L; Zhu L; Qiao S; Song L; Zhang M; Xue T; Lv B; Liu H; Zhang X
    J Sci Food Agric; 2024 Mar; 104(5):3090-3099. PubMed ID: 38063464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antarctic krill-derived peptides with consecutive Glu residues enhanced iron binding, solubility, and absorption.
    Hu S; Lin S; Wang D; Zhang S; Sun N
    Food Funct; 2021 Sep; 12(18):8615-8625. PubMed ID: 34346465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites.
    Fan C; Wang X; Song X; Sun R; Liu R; Sui W; Jin Y; Wu T; Zhang M
    Foods; 2023 Jan; 12(1):. PubMed ID: 36613440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability of iron multi-amino acid chelate preparation in mice and human duodenal HuTu 80 cells.
    Kajarabille N; Brown C; Cucliciu A; Thapaliya G; Latunde-Dada GO
    Br J Nutr; 2017 Mar; 117(6):767-774. PubMed ID: 28452291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans.
    Zhang Y; Ding X; Li M
    Food Chem; 2021 Jul; 349():129101. PubMed ID: 33540219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption.
    Li Y; Jiang H; Huang G
    Nutrients; 2017 Jun; 9(6):. PubMed ID: 28617327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model.
    Jin F; Frohman C; Thannhauser TW; Welch RM; Glahn RP
    Br J Nutr; 2009 Apr; 101(7):972-81. PubMed ID: 18755051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel microbial fermentation for the preparation of iron-chelating scallop skirts peptides-its profile, identification, and possible binding mode.
    Yan X; Yue Y; Guo B; Zhang S; Ji C; Chen Y; Dai Y; Dong L; Zhu B; Lin X
    Food Chem; 2024 Sep; 451():139493. PubMed ID: 38703728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher iron bioavailability of a human-like collagen iron complex.
    Zhu C; Yang F; Fan D; Wang Y; Yu Y
    J Biomater Appl; 2017 Jul; 32(1):82-92. PubMed ID: 28494636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of an iron-binding peptide from scad (Decapterus maruadsi) processing by-products and its effects on iron absorption by Caco-2 cells.
    Jiang H; Zhang W; Chen F; Zou J; Chen W; Huang G
    J Food Biochem; 2019 Jul; 43(7):e12876. PubMed ID: 31353718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antarctic Krill Derived Nonapeptide as an Effective Iron-Binding Ligand for Facilitating Iron Absorption via the Small Intestine.
    Sun N; Wang T; Wang D; Cui P; Hu S; Jiang P; Lin S
    J Agric Food Chem; 2020 Oct; 68(40):11290-11300. PubMed ID: 32914618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the peptides with calcium-binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates.
    Bingtong L; Yongliang Z; Liping S
    J Food Sci; 2020 Jan; 85(1):114-122. PubMed ID: 31869867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of high iron-chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode.
    Fan C; Ge X; Hao J; Wu T; Liu R; Sui W; Geng J; Zhang M
    Food Chem; 2023 Jan; 399():133912. PubMed ID: 36029677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Small Peptides of Acidic Collagen Extracts from Silver Carp Skin and Their Therapeutic Relevance.
    Wojtkowiak D; Frydrychowski AF; Hadzik J; Dominiak M
    Adv Clin Exp Med; 2016; 25(2):227-35. PubMed ID: 27627554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.