These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38945626)
1. Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance. Azambuja SPH; de Mélo AHF; Bertozzi BG; Inoue HP; Egawa VY; Rosa CA; Rocha LO; Teixeira GS; Goldbeck R Food Res Int; 2024 Aug; 190():114637. PubMed ID: 38945626 [TBL] [Abstract][Full Text] [Related]
2. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. Azambuja SPH; Goldbeck R World J Microbiol Biotechnol; 2020 Mar; 36(3):48. PubMed ID: 32152786 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Generoso WC; Schadeweg V; Oreb M; Boles E Curr Opin Biotechnol; 2015 Jun; 33():1-7. PubMed ID: 25286420 [TBL] [Abstract][Full Text] [Related]
4. Butanol tolerance in a selection of microorganisms. Knoshaug EP; Zhang M Appl Biochem Biotechnol; 2009 May; 153(1-3):13-20. PubMed ID: 19089652 [TBL] [Abstract][Full Text] [Related]
5. Analysis of metabolite profiles of Saccharomyces cerevisiae strains suitable for butanol production. Azambuja SPH; Teixeira GS; Andrietta MGS; Torres-Mayanga PC; Forster-Carneiro T; Rosa CA; Goldbeck R FEMS Microbiol Lett; 2019 Jul; 366(13):. PubMed ID: 31350996 [TBL] [Abstract][Full Text] [Related]
6. A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Tian L; Cervenka ND; Low AM; Olson DG; Lynd LR Sci Rep; 2019 Feb; 9(1):1736. PubMed ID: 30741948 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Saccharomyces cerevisiae strain tolerance to vanillin through heavy ion radiation combined with adaptive laboratory evolution. Jia C; Chai R; Zhang M; Guo X; Zhou X; Ding N; Lei C; Dong Z; Zhao J; Ren H; Lu D J Biotechnol; 2024 Nov; 394():112-124. PubMed ID: 39197754 [TBL] [Abstract][Full Text] [Related]
8. Progress and perspectives on improving butanol tolerance. Liu S; Qureshi N; Hughes SR World J Microbiol Biotechnol; 2017 Mar; 33(3):51. PubMed ID: 28190182 [TBL] [Abstract][Full Text] [Related]
9. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Chen S; Xu Y Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599 [TBL] [Abstract][Full Text] [Related]
10. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene. Hossein Helalat S; Bidaj S; Samani S; Moradi M Enzyme Microb Technol; 2019 May; 124():17-22. PubMed ID: 30797475 [TBL] [Abstract][Full Text] [Related]
11. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Costa DA; de Souza CJ; Costa PS; Rodrigues MQ; dos Santos AF; Lopes MR; Genier HL; Silveira WB; Fietto LG Appl Microbiol Biotechnol; 2014 Apr; 98(8):3829-40. PubMed ID: 24535257 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol. Zaki AM; Wimalasena TT; Greetham D J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1627-36. PubMed ID: 25242291 [TBL] [Abstract][Full Text] [Related]
13. Engineering E. coli to synthesize butanol. Abdelaal AS; Yazdani SS Biochem Soc Trans; 2022 Apr; 50(2):867-876. PubMed ID: 35356968 [TBL] [Abstract][Full Text] [Related]
14. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. Kanno M; Katayama T; Tamaki H; Mitani Y; Meng XY; Hori T; Narihiro T; Morita N; Hoshino T; Yumoto I; Kimura N; Hanada S; Kamagata Y Appl Environ Microbiol; 2013 Nov; 79(22):6998-7005. PubMed ID: 24014527 [TBL] [Abstract][Full Text] [Related]
15. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Hong ME; Lee KS; Yu BJ; Sung YJ; Park SM; Koo HM; Kweon DH; Park JC; Jin YS J Biotechnol; 2010 Aug; 149(1-2):52-9. PubMed ID: 20600383 [TBL] [Abstract][Full Text] [Related]
16. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production. Kuroda K; Ueda M FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533 [TBL] [Abstract][Full Text] [Related]
17. Improved Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972 [No Abstract] [Full Text] [Related]
18. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. Luo H; Zeng Q; Han S; Wang Z; Dong Q; Bi Y; Zhao Y World J Microbiol Biotechnol; 2017 Apr; 33(4):76. PubMed ID: 28337710 [TBL] [Abstract][Full Text] [Related]
19. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway. Sakuragi H; Morisaka H; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2015; 79(2):314-20. PubMed ID: 25348391 [TBL] [Abstract][Full Text] [Related]
20. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]