These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38945708)
61. Encapsulation of Sericin-Decorated Efficient Agents in Silk Hydrogels for Wound Dressings. Yan S; Li J; Gao Y; You J; Xu S; Wang C; Yang Y; Wu X ACS Appl Mater Interfaces; 2023 Oct; 15(42):48952-48962. PubMed ID: 37843040 [TBL] [Abstract][Full Text] [Related]
62. In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Tabata Y; Nagano A; Muniruzzaman M; Ikada Y Biomaterials; 1998 Oct; 19(19):1781-9. PubMed ID: 9856589 [TBL] [Abstract][Full Text] [Related]
63. Electric-field-sensitive hydrogel based on pineapple peel oxidized hydroxyethyl cellulose/gelatin/Hericium erinaceus residues chitosan and its study in curcumin delivery. Yin H; Song P; Zhou C; Huang H Int J Biol Macromol; 2024 Jun; 271(Pt 2):132591. PubMed ID: 38788873 [TBL] [Abstract][Full Text] [Related]
64. Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Zahiri M; Khanmohammadi M; Goodarzi A; Ababzadeh S; Sagharjoghi Farahani M; Mohandesnezhad S; Bahrami N; Nabipour I; Ai J Int J Biol Macromol; 2020 Jun; 153():1241-1250. PubMed ID: 31759002 [TBL] [Abstract][Full Text] [Related]
65. Antibacterial Vitamin K3 Carnosine Peptide-Laden Silk Fibroin Electrospun Fibers for Improvement of Skin Wound Healing in Diabetic Rats. Kandhasamy S; Liang B; Yang DP; Zeng Y ACS Appl Bio Mater; 2021 Jun; 4(6):4769-4788. PubMed ID: 35007027 [TBL] [Abstract][Full Text] [Related]
66. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. Wang L; Li J; Xiong Y; Wu Y; Yang F; Guo Y; Chen Z; Gao L; Deng W ACS Appl Mater Interfaces; 2021 Dec; 13(49):58329-58339. PubMed ID: 34860513 [TBL] [Abstract][Full Text] [Related]
67. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Shamloo A; Sarmadi M; Aghababaie Z; Vossoughi M Int J Pharm; 2018 Feb; 537(1-2):278-289. PubMed ID: 29288809 [TBL] [Abstract][Full Text] [Related]
68. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material. Srisawasdi T; Petcharoen K; Sirivat A; Jamieson AM Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():1-8. PubMed ID: 26249559 [TBL] [Abstract][Full Text] [Related]
69. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches. Xiao W; Li J; Qu X; Wang L; Tan Y; Li K; Li H; Yue X; Li B; Liao X Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():57-67. PubMed ID: 30889731 [TBL] [Abstract][Full Text] [Related]
70. Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Ghalei S; Nourmohammadi J; Solouk A; Mirzadeh H Colloids Surf B Biointerfaces; 2018 Dec; 172():82-89. PubMed ID: 30138790 [TBL] [Abstract][Full Text] [Related]
71. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Shan YH; Peng LH; Liu X; Chen X; Xiong J; Gao JQ Int J Pharm; 2015 Feb; 479(2):291-301. PubMed ID: 25556053 [TBL] [Abstract][Full Text] [Related]
72. Calcium phosphate incorporated in silk fibroin/methylcellulose based injectable hydrogel: Preparation, characterization, and in vitro biological evaluation for bone defect treatment. Phewchan P; Laoruengthana A; Tiyaboonchai W J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1640-1652. PubMed ID: 37194686 [TBL] [Abstract][Full Text] [Related]
73. Silk Hydrogel for Tissue Engineering: A Review. Ealla KKR; Veeraraghavan VP; Ravula NR; Durga CS; Ramani P; Sahu V; Poola PK; Patil S; Panta P J Contemp Dent Pract; 2022 Apr; 23(4):467-477. PubMed ID: 35945843 [TBL] [Abstract][Full Text] [Related]
74. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
75. Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. Gisbert Roca F; Lozano Picazo P; Pérez-Rigueiro J; Guinea Tortuero GV; Monleón Pradas M; Martínez-Ramos C Int J Biol Macromol; 2020 Apr; 148():378-390. PubMed ID: 31954793 [TBL] [Abstract][Full Text] [Related]
76. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
78. Strong, elastic and degradation-tolerated hydrogels composed of chitosan, silk fibroin and bioglass nanoparticles with factor-bestowed activity for bone tissue engineering. Yao H; Fu Q; Zhang Y; Wan Y; Min Q Int J Biol Macromol; 2023 Dec; 253(Pt 2):126619. PubMed ID: 37657578 [TBL] [Abstract][Full Text] [Related]
79. Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells. Ribeiro M; Fernandes MH; Beppu MM; Monteiro FJ; Ferraz MP Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():336-345. PubMed ID: 29752106 [TBL] [Abstract][Full Text] [Related]