BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38945720)

  • 1. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems.
    Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J
    Int J Biol Macromol; 2024 Jun; ():133367. PubMed ID: 38945720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Konjac glucomannan-based aerogels with excellent thermal stability and flame retardancy for thermal insulation application.
    Deng P; Liu X; Li Y; Zhang YF; Wu K; Jiang F
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127814. PubMed ID: 37918590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Influence of the Preparation Method of Konjac Glucomannan-Silica Aerogels on the Microstructure, Thermal Insulation, and Flame-Retardant Properties.
    Kuang Y; Liu P; Yang Y; Wang X; Liu M; Wang W; Guo T; Xiao M; Chen K; Jiang F; Li C
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seaweed-Derived Alginate-Cellulose Nanofiber Aerogel for Insulation Applications.
    Berglund L; Nissilä T; Sivaraman D; Komulainen S; Telkki VV; Oksman K
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34899-34909. PubMed ID: 34255967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties.
    Zhan H; Liu J; Wang P; Wang C; Wang Z; Chen M; Zhu X; Fu B
    Int J Biol Macromol; 2024 May; 273(Pt 2):132643. PubMed ID: 38823751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure.
    Zhu J; Li X; Li D; Jiang C
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45822-45831. PubMed ID: 36166410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust, Fire-Retardant, and Water-Resistant Wood/Polyimide Composite Aerogels with a Hierarchical Pore Structure for Thermal Insulation.
    Zhao L; Chen J; Pan D; Hou Y
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the comprehensive properties of chitosan-based thermal insulation aerogels by introducing a biobased epoxy thermoset to form an anisotropic honeycomb-layered structure.
    Zhang C; Song S; Cao Q; Li J; Liu Q; Zhang S; Jian X; Weng Z
    Int J Biol Macromol; 2023 Aug; 246():125616. PubMed ID: 37391003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking.
    Pan J; Li Y; Chen K; Zhang Y; Zhang H
    Carbohydr Polym; 2021 Aug; 266():118102. PubMed ID: 34044920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement.
    Pan Y; Zheng J; Xu Y; Chen X; Yan M; Li J; Zhao X; Feng Y; Ma Y; Ding M; Wang R; He J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):829-839. PubMed ID: 35963170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy.
    Zhu Z; Niu Y; Wang S; Su M; Long Y; Sun H; Liang W; Li A
    J Colloid Interface Sci; 2022 Apr; 612():35-42. PubMed ID: 34974256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid.
    Zhu J; Wang Y; Zhao X; Li N; Guo X; Zhao L; Yin Y
    Int J Biol Macromol; 2024 May; 267(Pt 1):131450. PubMed ID: 38588838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Robust-Soft" Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties.
    Yan M; Pan Y; Cheng X; Zhang Z; Deng Y; Lun Z; Gong L; Gao M; Zhang H
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27458-27470. PubMed ID: 34081863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy.
    Zhou S; Apostolopoulou-Kalkavoura V; Tavares da Costa MV; Bergström L; Strømme M; Xu C
    Nanomicro Lett; 2019 Dec; 12(1):9. PubMed ID: 34138073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection.
    Bhardwaj S; Singh S; Dev K; Chhajed M; Maji PK
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):18075-18089. PubMed ID: 38560888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.
    Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation.
    Yang L; Zhang H; Wang C; Jiao Y; Pang X; Xu J; Ma H
    J Colloid Interface Sci; 2024 Jun; 672():618-630. PubMed ID: 38861849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and Nanostructure of Chitosan/Nanocellulose Hybrid Aerogels.
    Zhang S; He J; Xiong S; Xiao Q; Xiao Y; Ding F; Ji H; Yang Z; Li Z
    Biomacromolecules; 2021 Aug; 22(8):3216-3222. PubMed ID: 34260205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.