These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38946113)
1. CapsEnhancer: An Effective Computational Framework for Identifying Enhancers Based on Chaos Game Representation and Capsule Network. Yao L; Xie P; Guan J; Chung CR; Huang Y; Pang Y; Wu H; Chiang YC; Lee TY J Chem Inf Model; 2024 Jul; 64(14):5725-5736. PubMed ID: 38946113 [TBL] [Abstract][Full Text] [Related]
2. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences. Gao Y; Chen Y; Feng H; Zhang Y; Yue Z Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950 [TBL] [Abstract][Full Text] [Related]
3. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers. Zhang Y; Zhang P; Wu H Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768 [TBL] [Abstract][Full Text] [Related]
4. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
5. iEnhancer-DLRA: identification of enhancers and their strengths by a self-attention fusion strategy for local and global features. Zeng L; Liu Y; Yu ZG; Liu Y Brief Funct Genomics; 2022 Sep; 21(5):399-407. PubMed ID: 35942693 [TBL] [Abstract][Full Text] [Related]
6. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Yang R; Wu F; Zhang C; Zhang L Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework. Wang Y; Hou Z; Yang Y; Wong KC; Li X PLoS Comput Biol; 2022 Dec; 18(12):e1010779. PubMed ID: 36520922 [TBL] [Abstract][Full Text] [Related]
8. SENIES: DNA Shape Enhanced Two-Layer Deep Learning Predictor for the Identification of Enhancers and Their Strength. Li Y; Kong F; Cui H; Wang F; Li C; Ma J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):637-645. PubMed ID: 35015646 [TBL] [Abstract][Full Text] [Related]
9. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition. Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456 [TBL] [Abstract][Full Text] [Related]
10. HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction. Liu Y; Wang Z; Yuan H; Zhu G; Zhang Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37539835 [TBL] [Abstract][Full Text] [Related]
11. A deep learning framework for enhancer prediction using word embedding and sequence generation. Geng Q; Yang R; Zhang L Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495 [TBL] [Abstract][Full Text] [Related]
12. A new method for enhancer prediction based on deep belief network. Bu H; Gan Y; Wang Y; Zhou S; Guan J BMC Bioinformatics; 2017 Oct; 18(Suppl 12):418. PubMed ID: 29072144 [TBL] [Abstract][Full Text] [Related]
13. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models. Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075 [TBL] [Abstract][Full Text] [Related]
14. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Basith S; Hasan MM; Lee G; Wei L; Manavalan B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226917 [TBL] [Abstract][Full Text] [Related]
15. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Le NQK; Ho QT; Nguyen TT; Ou YY Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511 [TBL] [Abstract][Full Text] [Related]
16. CAPE: a deep learning framework with Chaos-Attention net for Promoter Evolution. Ren R; Yu H; Teng J; Mao S; Bian Z; Tao Y; Yau SS Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39120645 [TBL] [Abstract][Full Text] [Related]
17. DEEP: a general computational framework for predicting enhancers. Kleftogiannis D; Kalnis P; Bajic VB Nucleic Acids Res; 2015 Jan; 43(1):e6. PubMed ID: 25378307 [TBL] [Abstract][Full Text] [Related]
18. A Novel Position-Specific Encoding Algorithm (SeqPose) of Nucleotide Sequences and Its Application for Detecting Enhancers. Mu X; Wang Y; Duan M; Liu S; Li F; Wang X; Zhang K; Huang L; Zhou F Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802922 [TBL] [Abstract][Full Text] [Related]
19. iEnhancer-RD: Identification of enhancers and their strength using RKPK features and deep neural networks. Yang H; Wang S; Xia X Anal Biochem; 2021 Oct; 630():114318. PubMed ID: 34364858 [TBL] [Abstract][Full Text] [Related]
20. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]