These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38946113)

  • 21. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome.
    Phan LT; Oh C; He T; Manavalan B
    Proteomics; 2023 Jul; 23(13-14):e2200409. PubMed ID: 37021401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and Classification of Enhancers Using Dimension Reduction Technique and Recurrent Neural Network.
    Li Q; Xu L; Li Q; Zhang L
    Comput Math Methods Med; 2020; 2020():8852258. PubMed ID: 33133227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.
    Nagari A; Murakami S; Malladi VS; Kraus WL
    Methods Mol Biol; 2017; 1468():121-38. PubMed ID: 27662874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework.
    Liao M; Zhao JP; Tian J; Zheng CH
    BMC Bioinformatics; 2022 Nov; 23(1):480. PubMed ID: 36376800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A machine learning technique for identifying DNA enhancer regions utilizing CIS-regulatory element patterns.
    Butt AH; Alkhalifah T; Alturise F; Khan YD
    Sci Rep; 2022 Sep; 12(1):15183. PubMed ID: 36071071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Enhancer Identification with a Multi-Classifier Stacked Ensemble Model.
    Mir BA; Rehman MU; Tayara H; Chong KT
    J Mol Biol; 2023 Dec; 435(23):168314. PubMed ID: 37852600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting enhancer-promoter interactions by deep learning and matching heuristic.
    Min X; Ye C; Liu X; Zeng X
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33096548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational identification of active enhancers in model organisms.
    Wang C; Zhang MQ; Zhang Z
    Genomics Proteomics Bioinformatics; 2013 Jun; 11(3):142-50. PubMed ID: 23685394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancer Predictions and Genome-Wide Regulatory Circuits.
    Beer MA; Shigaki D; Huangfu D
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():37-54. PubMed ID: 32443951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information.
    Wu H; Liu M; Zhang P; Zhang H
    Brief Funct Genomics; 2023 May; 22(3):302-311. PubMed ID: 36715222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network.
    Zhang TH; Flores M; Huang Y
    Anal Biochem; 2021 Apr; 618():114120. PubMed ID: 33535061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Transcribed Enhancers by Genome-Wide Chromatin Immunoprecipitation Sequencing.
    Blinka S; Reimer MH; Pulakanti K; Pinello L; Yuan GC; Rao S
    Methods Mol Biol; 2017; 1468():91-109. PubMed ID: 27662872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
    Yang B; Liu F; Ren C; Ouyang Z; Xie Z; Bo X; Shu W
    Bioinformatics; 2017 Jul; 33(13):1930-1936. PubMed ID: 28334114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Enhancers in DNA Sequence Data using a Hybrid CNN-DLSTM Model.
    Kaur A; Chauhan APS; Aggarwal AK
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1327-1336. PubMed ID: 35417351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks.
    Wang J; Zhang H; Chen N; Zeng T; Ai X; Wu K
    Animals (Basel); 2023 Sep; 13(18):. PubMed ID: 37760334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.