These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38946341)

  • 1. Open-Cage Copper Complexes Modulate Coordination and Charge Transfer.
    Firestone E; Staples R; Hamann TW
    Inorg Chem; 2024 Jul; 63(26):12081-12088. PubMed ID: 38946341
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kannankutty K; Chen CC; Nguyen VS; Lin YC; Chou HH; Yeh CY; Wei TC
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5812-5819. PubMed ID: 31942803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells.
    Higashino T; Iiyama H; Nimura S; Kurumisawa Y; Imahori H
    Inorg Chem; 2020 Jan; 59(1):452-459. PubMed ID: 31829578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective.
    Masud ; Kim HK
    ACS Omega; 2023 Feb; 8(7):6139-6163. PubMed ID: 36844550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 1-Substituted 2-(Pyridin-2-yl)-1
    Selvaraj B; Shanmugam G; Kamaraj S; Gunasekeran A; Sambandam A
    Inorg Chem; 2021 Feb; 60(3):1937-1947. PubMed ID: 33439642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidovanadium(IV/V) complexes as new redox mediators in dye-sensitized solar cells: a combined experimental and theoretical study.
    Apostolopoulou A; Vlasiou M; Tziouris PA; Tsiafoulis C; Tsipis AC; Rehder D; Kabanos TA; Keramidas AD; Stathatos E
    Inorg Chem; 2015 Apr; 54(8):3979-88. PubMed ID: 25844512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells.
    Hattori S; Wada Y; Yanagida S; Fukuzumi S
    J Am Chem Soc; 2005 Jul; 127(26):9648-54. PubMed ID: 15984893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells.
    Fagnani F; Colombo A; Dragonetti C; Roberto D
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable Dye-Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand.
    Rui H; Shen J; Yu Z; Li L; Han H; Sun L
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):16156-16163. PubMed ID: 33991028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance induced by in situ ligand exchange reactions of copper bipyridyl redox couples in dye-sensitized solar cells.
    Wang Y; Hamann TW
    Chem Commun (Camb); 2018 Oct; 54(87):12361-12364. PubMed ID: 30324210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells.
    Rodrigues RR; Lee JM; Taylor NS; Cheema H; Chen L; Fortenberry RC; Delcamp JH; Jurss JW
    Dalton Trans; 2020 Jan; 49(2):343-355. PubMed ID: 31825041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Low-Spin Cobalt Complex Redox Shuttles for Dye-Sensitized Solar Cells.
    Xie Y; Hamann TW
    J Phys Chem Lett; 2013 Jan; 4(2):328-32. PubMed ID: 26283443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A periodic walk: a series of first-row transition metal complexes with the pentadentate ligand PY5.
    Klein Gebbink RJ; Jonas RT; Goldsmith CR; Stack TD
    Inorg Chem; 2002 Sep; 41(18):4633-41. PubMed ID: 12206686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality.
    Lindh L; Gordivska O; Persson S; Michaels H; Fan H; Chábera P; Rosemann NW; Gupta AK; Benesperi I; Uhlig J; Prakash O; Sheibani E; Kjaer KS; Boschloo G; Yartsev A; Freitag M; Lomoth R; Persson P; Wärnmark K
    Chem Sci; 2021 Dec; 12(48):16035-16053. PubMed ID: 35024126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions.
    Kashif MK; Axelson JC; Duffy NW; Forsyth CM; Chang CJ; Long JR; Spiccia L; Bach U
    J Am Chem Soc; 2012 Oct; 134(40):16646-53. PubMed ID: 22967268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Absorbing Pyridine Derivative as a New Electrolyte Additive for Developing Efficient Porphyrin Dye-Sensitized Solar Cells.
    Zou J; Yan Q; Li C; Lu Y; Tong Z; Xie Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57017-57024. PubMed ID: 33306356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A High-Voltage Molecular-Engineered Organic Sensitizer-Iron Redox Shuttle Pair: 1.4 V DSSC and 3.3 V SSM-DSSC Devices.
    Rodrigues RR; Cheema H; Delcamp JH
    Angew Chem Int Ed Engl; 2018 May; 57(19):5472-5476. PubMed ID: 29532577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.