These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38946620)

  • 1. Ultrasonic Healing of Plastrons.
    Drago-González A; Fauconnier M; Karunakaran B; Wong WSY; Ras RHA; Nieminen HJ
    Adv Sci (Weinh); 2024 Jul; ():e2403028. PubMed ID: 38946620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces.
    Jiang Y; Lian J; Jiang Z; Li Y; Wen C
    Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Surfactants Affect Droplet Wetting on Hydrophobic Microstructures.
    Shardt N; Bigdeli MB; Elliott JAW; Tsai PA
    J Phys Chem Lett; 2019 Dec; 10(23):7510-7515. PubMed ID: 31763845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible switching between superhydrophobic states on a hierarchically structured surface.
    Verho T; Korhonen JT; Sainiemi L; Jokinen V; Bower C; Franze K; Franssila S; Andrew P; Ikkala O; Ras RH
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10210-3. PubMed ID: 22689952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Regularly Nanostructured Surfaces Induced by an Electric Field.
    Zhang BX; Wang SL; Wang XD
    Langmuir; 2019 Jan; 35(3):662-670. PubMed ID: 30601010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Droplet Evaporation on Superhydrophobic Surfaces.
    Fernandes HC; Vainstein MH; Brito C
    Langmuir; 2015 Jul; 31(27):7652-9. PubMed ID: 26086999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of Cassie-Baxter wetting states on microstructured surfaces.
    Guo HY; Li B; Feng XQ
    Phys Rev E; 2016 Oct; 94(4-1):042801. PubMed ID: 27841635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of transitions between wetting states on microcavity arrays by optical transmission microscopy.
    Søgaard E; Andersen NK; Smistrup K; Larsen ST; Sun L; Taboryski R
    Langmuir; 2014 Nov; 30(43):12960-8. PubMed ID: 25289462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity.
    Wang J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39034615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces.
    Beitollahpoor M; Farzam M; Pesika NS
    J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Wetting Dynamics with Triboelectrification.
    Zhang X; Scaraggi M; Zheng Y; Li X; Wu Y; Wang D; Dini D; Zhou F
    Adv Sci (Weinh); 2022 Aug; 9(24):e2200822. PubMed ID: 35674345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze fracture approach to directly visualize wetting transitions on nanopatterned superhydrophobic silicon surfaces: more than a proof of principle.
    Wiedemann S; Plettl A; Walther P; Ziemann P
    Langmuir; 2013 Jan; 29(3):913-9. PubMed ID: 23259773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.