BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 38946813)

  • 1. 3D printing redefines microneedle fabrication for transdermal drug delivery.
    Song KY; Zhang WJ; Behzadfar M
    Biomed Eng Lett; 2024 Jul; 14(4):737-746. PubMed ID: 38946813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
    Wu L; Park J; Kamaki Y; Kim B
    Microsyst Nanoeng; 2021; 7():58. PubMed ID: 34567770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.
    Luzuriaga MA; Berry DR; Reagan JC; Smaldone RA; Gassensmith JJ
    Lab Chip; 2018 Apr; 18(8):1223-1230. PubMed ID: 29536070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features.
    Rezapour Sarabi M; Alseed MM; Karagoz AA; Tasoglu S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery.
    Al-Nimry SS; Daghmash RM
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate.
    Khosraviboroujeni A; Mirdamadian SZ; Minaiyan M; Taheri A
    Drug Deliv Transl Res; 2022 May; 12(5):1195-1208. PubMed ID: 34024015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of 3D Printing Technology in Microengineering of Microneedles.
    Detamornrat U; McAlister E; Hutton ARJ; Larrañeta E; Donnelly RF
    Small; 2022 May; 18(18):e2106392. PubMed ID: 35362226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery.
    Sirbubalo M; Tucak A; Muhamedagic K; Hindija L; Rahić O; Hadžiabdić J; Cekic A; Begic-Hajdarevic D; Cohodar Husic M; Dervišević A; Vranić E
    Pharmaceutics; 2021 Jun; 13(7):. PubMed ID: 34206285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications.
    Aldawood FK; Parupelli SK; Andar A; Desai S
    Pharmaceutics; 2024 Feb; 16(2):. PubMed ID: 38399291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization.
    Baykara D; Bedir T; Ilhan E; Mutlu ME; Gunduz O; Narayan R; Ustundag CB
    Front Bioeng Biotechnol; 2023; 11():1157541. PubMed ID: 37251572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed microneedles for transdermal drug delivery: A brief review of two decades.
    Elahpour N; Pahlevanzadeh F; Kharaziha M; Bakhsheshi-Rad HR; Ramakrishna S; Berto F
    Int J Pharm; 2021 Mar; 597():120301. PubMed ID: 33540018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
    Mathew E; Pitzanti G; Gomes Dos Santos AL; Lamprou DA
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing.
    Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A
    Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Integrated Ultrasonic Microneedle Array for Rapid Transdermal Drug Delivery.
    Chen Z; Wu H; Zhao S; Chen X; Wei T; Peng H; Chen Z
    Mol Pharm; 2022 Sep; 19(9):3314-3322. PubMed ID: 35947780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery.
    Zhou X; Liu H; Yu Z; Yu H; Meng D; Zhu L; Li H
    J Colloid Interface Sci; 2024 Sep; 670():1-11. PubMed ID: 38749378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery.
    Liu H; Zhou X; Nail A; Yu H; Yu Z; Sun Y; Wang K; Bao N; Meng D; Zhu L; Li H
    J Control Release; 2024 Apr; 368():115-130. PubMed ID: 38367865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Prototype Fabrication of a Cost-Effective Microneedle Drug Delivery Apparatus Using Fused Filament Fabrication, Liquid Crystal Display and Semi-Solid Extrusion 3D Printing Technologies.
    Papadimitriou P; Andriotis EG; Fatouros D; Tzetzis D
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.
    Loh JM; Lim YJL; Tay JT; Cheng HM; Tey HL; Liang K
    Bioact Mater; 2024 Feb; 32():222-241. PubMed ID: 37869723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of Design and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength, Sharpness, and Drug Delivery.
    Economidou SN; Pissinato Pere CP; Okereke M; Douroumis D
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33499301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.