These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38946826)

  • 1. Computational analysis of electrode structure and configuration for efficient and localized neural stimulation.
    Choi JH; Moon J; Park YH; Eom K
    Biomed Eng Lett; 2024 Jul; 14(4):717-726. PubMed ID: 38946826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrode configuration and stimulus level on rate and level discrimination with cochlear implants.
    Morris DJ; Pfingst BE
    J Assoc Res Otolaryngol; 2000 Nov; 1(3):211-23. PubMed ID: 11545227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bipolar transcutaneous spinal stimulation evokes short-latency reflex responses in human lower limbs alike standard unipolar electrode configuration.
    Krenn MJ; Vargas Luna JL; Mayr W; Stokic DS
    J Neurophysiol; 2020 Oct; 124(4):1072-1082. PubMed ID: 32845202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Sub-Threshold Pre-Pulses on Neural Activation Depends on Electrode Configuration.
    Eickhoff S; Jarvis JC
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2552-2559. PubMed ID: 31905132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Bipolar and Monopolar Electrode Configurations for FES on Biceps Brachii.
    Arai K; Sugi M; Yokoi H; Wang L; Jiang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses.
    Pfingst BE; Franck KH; Xu L; Bauer EM; Zwolan TA
    J Assoc Res Otolaryngol; 2001 Jun; 2(2):87-103. PubMed ID: 11550528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Shaping Strategies for Electroceuticals: A Comprehensive Survey of the Use of Interphase Gaps in Miniature Stimulation Systems.
    Eickhoff S; Jarvis JC
    IEEE Trans Biomed Eng; 2021 May; 68(5):1658-1667. PubMed ID: 33651679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focalizing electrical neural stimulation with penetrating microelectrode arrays: a modeling study.
    Joucla S; Rousseau L; Yvert B
    J Neurosci Methods; 2012 Jul; 209(1):250-4. PubMed ID: 22677176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-monopolar stimulation: a novel electrode design configuration for performance optimization of a retinal neuroprosthesis.
    Khalili Moghadam G; Wilke R; Suaning GJ; Lovell NH; Dokos S
    PLoS One; 2013; 8(8):e73130. PubMed ID: 23991175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory cortical images of cochlear-implant stimuli: coding of stimulus channel and current level.
    Middlebrooks JC; Bierer JA
    J Neurophysiol; 2002 Jan; 87(1):493-507. PubMed ID: 11784765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized multi-electrode stimulation increases focality and intensity at target.
    Dmochowski JP; Datta A; Bikson M; Su Y; Parra LC
    J Neural Eng; 2011 Aug; 8(4):046011. PubMed ID: 21659696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Implantable Neuroelectrodes.
    Krishnan J; Joseph R; Vayalappil MC; Krishnan S; Kishore A
    Crit Rev Biomed Eng; 2024; 52(1):21-39. PubMed ID: 37938182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-Based Vestibular Afferent Stimulation: Evaluating Selective Electrode Locations and Stimulation Waveform Shapes.
    Schier P; Handler M; Johnson Chacko L; Schrott-Fischer A; Fritscher K; Saba R; Baumgartner C; Baumgarten D
    Front Neurosci; 2018; 12():588. PubMed ID: 30214391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monopolar vs. bipolar subretinal stimulation-an in vitro study.
    Gerhardt M; Groeger G; Maccarthy N
    J Neurosci Methods; 2011 Jul; 199(1):26-34. PubMed ID: 21557968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS.
    Faria P; Hallett M; Miranda PC
    J Neural Eng; 2011 Dec; 8(6):066017. PubMed ID: 22086257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.
    Goldwyn JH; Bierer SM; Bierer JA
    Hear Res; 2010 Sep; 268(1-2):93-104. PubMed ID: 20580801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.