These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38946826)

  • 41. Three-dimensional multilayer concentric bipolar electrodes restrict spatial activation in optic nerve stimulation.
    Borda E; Gaillet V; Airaghi Leccardi MJI; Zollinger EG; Moreira RC; Ghezzi D
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523152
    [No Abstract]   [Full Text] [Related]  

  • 42. Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex.
    Middlebrooks JC
    J Neurophysiol; 2008 Jul; 100(1):92-107. PubMed ID: 18450583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Elahi B; Molina A; Mosig JR; Pollo C; Chen R; Graham SJ
    Front Neuroeng; 2013; 6():3. PubMed ID: 23874290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
    Habib AG; Cameron MA; Suaning GJ; Lovell NH; Morley JW
    J Neural Eng; 2013 Jun; 10(3):036013. PubMed ID: 23612906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations.
    Corović S; Pavlin M; Miklavcic D
    Biomed Eng Online; 2007 Oct; 6():37. PubMed ID: 17937793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of a cochlear implant simultaneous analog stimulation strategy coupled with a monopolar electrode configuration.
    Xu L; Zwolan TA; Thompson CS; Pfingst BE
    Ann Otol Rhinol Laryngol; 2005 Nov; 114(11):886-93. PubMed ID: 16363059
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional electro-neural interfaces electroplated on subretinal prostheses.
    Butt E; Wang BY; Shin A; Chen ZC; Bhuckory M; Shah S; Galambos L; Kamins T; Palanker D; Mathieson K
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An
    Song X; Qiu S; Shivdasani MN; Zhou F; Liu Z; Ma S; Chai X; Chen Y; Cai X; Guo T; Li L
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35255486
    [No Abstract]   [Full Text] [Related]  

  • 49. Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond.
    Cai Y; Edin F; Jin Z; Alexsson A; Gudjonsson O; Liu W; Rask-Andersen H; Karlsson M; Li H
    Acta Biomater; 2016 Feb; 31():211-220. PubMed ID: 26593784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance optimization of current focusing and virtual electrode strategies in retinal implants.
    Khalili Moghaddam G; Lovell NH; Wilke RG; Suaning GJ; Dokos S
    Comput Methods Programs Biomed; 2014 Nov; 117(2):334-42. PubMed ID: 25023532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impacts of stimulus parameters and configurations on motor cortex direct electrical stimulation using intrinsic optical imaging: a pilot study.
    Liu L; Zhang J; Sun J; Xu K
    Biomed Eng Online; 2022 Aug; 21(1):58. PubMed ID: 36038875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis.
    Brunton E; Lowery AJ; Rajan R
    Front Neuroeng; 2012; 5():23. PubMed ID: 23060789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.
    Joucla S; Yvert B
    J Physiol Paris; 2012; 106(3-4):146-58. PubMed ID: 22036892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvements on spatial coverage and focality of deep brain stimulation in pre-surgical epilepsy mapping.
    Collavini S; Fernández-Corazza M; Oddo S; Princich JP; Kochen S; Muravchik CH
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33578398
    [No Abstract]   [Full Text] [Related]  

  • 57. Computational study on subdural cortical stimulation - the influence of the head geometry, anisotropic conductivity, and electrode configuration.
    Kim D; Seo H; Kim HI; Jun SC
    PLoS One; 2014; 9(9):e108028. PubMed ID: 25229673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical safety limits for clinical stimulation investigated using depth and strip electrodes in the pig brain.
    Vatsyayan R; Cleary D; Martin JR; Halgren E; Dayeh SA
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34015769
    [No Abstract]   [Full Text] [Related]  

  • 59. Biophysical modeling of the electric field magnitude and distribution induced by electrical stimulation with intracerebral electrodes.
    Alonso F; Mercadal B; Salvador R; Ruffini G; Bartolomei F; Wendling F; Modolo J
    Biomed Phys Eng Express; 2023 Jun; 9(4):. PubMed ID: 37160106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relevance of selective neural stimulation with a multicontact cuff electrode using multicriteria analysis.
    Dali M; William L; Tigra W; Taillades H; Rossel O; Azevedo C; Guiraud D
    PLoS One; 2019; 14(7):e0219079. PubMed ID: 31265480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.