These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38947783)

  • 21. Use of MPA-capped CdS quantum dots for sensitive detection and quantification of Co
    Bel Haj Mohamed N; Ben Brahim N; Mrad R; Haouari M; Ben Chaâbane R; Negrerie M
    Anal Chim Acta; 2018 Oct; 1028():50-58. PubMed ID: 29884353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots.
    Zhong Y; Zou Y; Yang X; Lu Z; Wang D
    Mikrochim Acta; 2021 Dec; 189(1):19. PubMed ID: 34877612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots.
    Liu S; Hu J; Su X
    Analyst; 2012 Oct; 137(19):4598-604. PubMed ID: 22898753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient detection doxorubicin hydrochloride using CuInSe
    Mi G; Shi H; Yang M; Wang C; Hao H; Fan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Nov; 241():118673. PubMed ID: 32679484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions.
    Arumugam N; Kim J
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():720-725. PubMed ID: 30184800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots.
    Bian W; Ma J; Guo W; Lu D; Fan M; Wei Y; Li Y; Shuang S; Choi MM
    Talanta; 2013 Nov; 116():794-800. PubMed ID: 24148476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterisation of quantum dots coupled to mycolic acids as a water-soluble fluorescent probe for potential lateral flow detection of antibodies and diagnosis of tuberculosis.
    Kabwe KP; Nsibande SA; Lemmer Y; Pilcher LA; Forbes PBC
    Luminescence; 2022 Feb; 37(2):278-289. PubMed ID: 34813145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrothermal synthesis for high-quality glutathione-capped Cd
    Lai L; Sheng SY; Mei P; Liu Y; Guo QL
    Luminescence; 2017 Mar; 32(2):231-239. PubMed ID: 27357158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascorbic Acid Sensor Based on CdS QDs@PDA Fluorescence Resonance Energy Transfer.
    Li P; Chen X; Wu G; Wang Z; Huang C
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A High-Quality CdSe/CdS/ZnS Quantum-Dot-Based FRET Aptasensor for the Simultaneous Detection of Two Different Alzheimer's Disease Core Biomarkers.
    Lu X; Hou X; Tang H; Yi X; Wang J
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan and κ-carrageenan-derived nitrogen and sulfur co-doped carbon dots "on-off-on" fluorescent probe for sequential detection of Fe
    Xu J; Wang Y; Sun L; Qi Q; Zhao X
    Int J Biol Macromol; 2021 Nov; 191():1221-1227. PubMed ID: 34627843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A ratiometric fluorescent nanoprobe based on CdSe quantum dots for the detection of Ag
    Zhou Z; Cen J; Jiang N; Sun Y; Li Z; Yang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122302. PubMed ID: 36603280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Citric Acid Capped CdS Quantum Dots for Fluorescence Detection of Copper Ions (II) in Aqueous Solution.
    Wang Z; Xiao X; Zou T; Yang Y; Xing X; Zhao R; Wang Z; Wang Y
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30591648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous Synthesis for Highly Emissive 3-Mercaptopropionic Acid-Capped AIZS Quantum Dots.
    Mrad M; Ben Chaabane T; Rinnert H; Lavinia B; Jasniewski J; Medjahdi G; Schneider R
    Inorg Chem; 2020 May; 59(9):6220-6231. PubMed ID: 32319767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Studies on the Aqueous Synthesis and Biocompatibility of L-Cysteine and Mercaptopropionic Acid Capped CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots.
    Sukanya D; Nathan DMGT; Mahesh R; Sagayaraj P
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3334-3342. PubMed ID: 30744761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks.
    Gong T; Liu J; Liu X; Liu J; Xiang J; Wu Y
    Food Chem; 2016 Dec; 213():306-312. PubMed ID: 27451185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino Acid-Capped Water-Soluble Near-Infrared Region CuInS
    Liu J; Zhao X; Xu H; Wang Z; Dai Z
    Anal Chem; 2019 Jul; 91(14):8987-8993. PubMed ID: 31265249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.