BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38947784)

  • 1. Friendly Environmental Strategies to Recycle Zinc-Carbon Batteries for Excellent Gel Polymer Electrolyte (PVA-ZnSO
    Vuong TTT; Phan HT; Vu Thi Thu N; Nguyen PL; Nguyen HT; Le HV; Nguyen NT; Phung TVB; Le PA
    ACS Omega; 2024 Jun; 9(25):27710-27721. PubMed ID: 38947784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-Carbon Battery Recycling for Investigating Carbon Materials for Supercapacitor Applications.
    Vuong TTT; Nguyen PL; Nguyen NT; Phung TVB; Le PA
    ACS Omega; 2024 May; 9(21):22543-22556. PubMed ID: 38826542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional applications for waste zinc-carbon battery to synthesize carbon dots and symmetrical solid-state supercapacitors.
    Le PA; Le VQ; Nguyen NT; Nguyen VT; Van Thanh D; Phung TVB
    RSC Adv; 2022 Mar; 12(17):10608-10618. PubMed ID: 35425023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.
    Senthilkumar ST; Selvan RK; Melo JS; Sanjeeviraja C
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10541-50. PubMed ID: 24164312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food seasoning-derived gel polymer electrolyte and pulse-plasma exfoliated graphene nanosheet electrodes for symmetrical solid-state supercapacitors.
    Le PA; Le VQ; Nguyen NT; Phung VBT
    RSC Adv; 2022 Jan; 12(3):1515-1526. PubMed ID: 35425167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes.
    Wang C; Hu K; Liu Y; Zhang MR; Wang Z; Li Z
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor.
    Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H
    Front Chem; 2020; 8():663. PubMed ID: 33195003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper nanoparticles anchored onto boron-doped graphene nanosheets for use as a high performance asymmetric solid-state supercapacitor.
    Pandian PM; Pandurangan A
    RSC Adv; 2019 Jan; 9(6):3443-3461. PubMed ID: 35548687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowires of polyaniline festooned silver coated paper electrodes for efficient solid-state symmetrical supercapacitors.
    Aashish A; Molji C; Priya GK; Sankaran M; Saraswathy Hareesh UN; Devaki SJ
    RSC Adv; 2018 Sep; 8(58):33314-33324. PubMed ID: 35558639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Performance of Symmetric Solid-State Supercapacitors Based on Carbon Xerogel Electrodes and Solid Polymer Electrolytes.
    Karamanova B; Mladenova E; Thomas M; Rey-Raap N; Arenillas A; Lufrano F; Stoyanova A
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene/Carbon Paper Combined with Redox Active Electrolyte for Supercapacitors with High Performance.
    Xia Y; Mo Y; Meng W; Du X; Ma C
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31426288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Aqueous Zinc-Ion Batteries Based on Multidimensional V
    Hong J; Xie L; Shi C; Lu X; Shi X; Cai J; Wu Y; Shao L; Sun Z
    Small Methods; 2024 Jun; 8(6):e2300205. PubMed ID: 37283477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. V
    Chen W; Zhang L; Ren H; Miao T; Wang Z; Zhan K; Yang J; Zhao B
    J Colloid Interface Sci; 2022 Nov; 626():59-67. PubMed ID: 35780552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Lithium Sulfate and Zinc Sulfate Additives on the Cycle Life and Efficiency of Lead Acid Batteries.
    Musei NN; Onu CE; Ihuaku KI; Igbokwe PK
    ACS Omega; 2021 Feb; 6(6):4423-4429. PubMed ID: 33623850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries.
    Wang X; Kirianova AV; Xu X; Liu Y; Kapitanova OO; Gallyamov MO
    Nanotechnology; 2021 Dec; 33(12):. PubMed ID: 34875644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes.
    Fan H; Niu R; Duan J; Liu W; Shen W
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19475-83. PubMed ID: 27406686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.