These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38947804)

  • 1. Image-Based Detection of Adulterants in Milk Using Convolutional Neural Network.
    Mamgain A; Kumar V; Dash S
    ACS Omega; 2024 Jun; 9(25):27158-27168. PubMed ID: 38947804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaporation-Based Low-Cost Method for the Detection of Adulterant in Milk.
    Kumar V; Dash S
    ACS Omega; 2021 Oct; 6(41):27200-27207. PubMed ID: 34693139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Identification of adulterants in adulterated milks by near infrared spectroscopy combined with non-linear pattern recognition methods].
    Ni LJ; Zhong L; Zhang X; Zhang LG; Huang SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2673-8. PubMed ID: 25739206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect.
    Hussain A; Sun DW; Pu H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jun; 36(6):851-862. PubMed ID: 31034331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of milk adulteration using coffee ring effect and convolutional neural network.
    Parsain T; Tripathi A; Tiwari A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 Jul; 41(7):730-741. PubMed ID: 38814700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nontargeted detection and recognition of adulterants in milk powder using Raman imaging and neural networks.
    Xia Q; Huang Z; Zhang P; Bu H; Bao L; Chen D
    Analyst; 2023 Jan; 148(2):412-421. PubMed ID: 36541331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?
    Yang Y; Hettinga KA; Erasmus SW; Pustjens AM; van Ruth SM
    Food Res Int; 2020 Oct; 136():109543. PubMed ID: 32846598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the utilization of deep and ensemble learning to detect milk adulteration.
    Neto HA; Tavares WLF; Ribeiro DCSZ; Alves RCO; Fonseca LM; Campos SVA
    BioData Min; 2019; 12():13. PubMed ID: 31320927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Paper-based milk adulteration detection device.
    Patari S; Datta P; Mahapatra PS
    Sci Rep; 2022 Aug; 12(1):13657. PubMed ID: 35953582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration.
    Pradana-Lopez S; Perez-Calabuig AM; Cancilla JC; Garcia-Rodriguez Y; Torrecilla JS
    Food Chem; 2022 Jan; 368():130765. PubMed ID: 34474243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants.
    Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ
    Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of neutralising acid adulterants in raw milk using a milk component analyser and chemometrics.
    Tian H; Chen B; Yu H; Lou X; Li Y; Yu H; Chen L; Chen C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Sep; 39(9):1501-1511. PubMed ID: 35767628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil.
    Krause A; Wu Y; Tian R; van Beek TA
    Planta Med; 2018 Aug; 84(12-13):953-963. PubMed ID: 29689585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slice spectra approach to synchronous Two-dimensional correlation spectroscopy analysis for milk adulteration discriminate.
    Wu H; Yang R; Huang M; Wei Y; Dong G; Jin H; Zeng Y; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121332. PubMed ID: 35550992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry.
    Abernethy G; Higgs K
    J Chromatogr A; 2013 May; 1288():10-20. PubMed ID: 23540766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach.
    Ahmmed F; Killeen DP; Gordon KC; Fraser-Miller SJ
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Deep Learning to Predict Coconut Milk Adulteration Using FT-NIR and Micro-NIR Spectroscopy.
    Sitorus A; Lapcharoensuk R
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of adulterated peony seed oil by electronic nose.
    Wei X; Shao X; Wei Y; Cheong L; Pan L; Tu K
    J Food Sci Technol; 2018 Jun; 55(6):2152-2159. PubMed ID: 29892116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid quantitative authentication and analysis of camellia oil adulterated with edible oils by electronic nose and FTIR spectroscopy.
    Wang X; Gu Y; Lin W; Zhang Q
    Curr Res Food Sci; 2024; 8():100732. PubMed ID: 38699681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique.
    Qin J; Kim MS; Chao K; Dhakal S; Lee H; Cho BK; Mo C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):152-161. PubMed ID: 27879171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.