These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38947947)

  • 61. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth.
    Lebrazi S; Niehaus K; Bednarz H; Fadil M; Chraibi M; Fikri-Benbrahim K
    J Genet Eng Biotechnol; 2020 Nov; 18(1):71. PubMed ID: 33175273
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings.
    Strader LC; Culler AH; Cohen JD; Bartel B
    Plant Physiol; 2010 Aug; 153(4):1577-86. PubMed ID: 20562230
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Immunoaffinity purification using monoclonal antibodies for the isolation of indole auxins from elongation zones of epicotyls of red-light-grown Alaska peas.
    Ulvskov P; Marcussen J; Seiden P; Olsen CE
    Planta; 1992 Sep; 188(2):182-9. PubMed ID: 24178254
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis of indole-3-acetic acid and indole-3-butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis.
    Karakeçili A; Korpayev S; Dumanoğlu H; Alizadeh S
    J Biotechnol; 2019 Sep; 303():8-15. PubMed ID: 31301312
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitric Oxide Cooperates With Auxin to Mitigate the Alterations in the Root System Caused by Cadmium and Arsenic.
    Piacentini D; Della Rovere F; Sofo A; Fattorini L; Falasca G; Altamura MM
    Front Plant Sci; 2020; 11():1182. PubMed ID: 32849732
    [No Abstract]   [Full Text] [Related]  

  • 66. Tryptophan-dependent indole-3-acetic acid biosynthesis by 'IAA-synthase' proceeds via indole-3-acetamide.
    Pollmann S; Düchting P; Weiler EW
    Phytochemistry; 2009 Mar; 70(4):523-31. PubMed ID: 19268331
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-yield production of indole-3-acetic acid by
    Nutaratat P; Monprasit A; Srisuk N
    3 Biotech; 2017 Oct; 7(5):305. PubMed ID: 28948133
    [No Abstract]   [Full Text] [Related]  

  • 68. Why plants need more than one type of auxin.
    Simon S; Petrášek J
    Plant Sci; 2011 Mar; 180(3):454-60. PubMed ID: 21421392
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid in situ assay for indoleacetic Acid production by bacteria immobilized on a nitrocellulose membrane.
    Bric JM; Bostock RM; Silverstone SE
    Appl Environ Microbiol; 1991 Feb; 57(2):535-8. PubMed ID: 16348419
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina.
    Matsuda R; Handayani ML; Sasaki H; Takechi K; Takano H; Takio S
    Arch Microbiol; 2018 Mar; 200(2):255-265. PubMed ID: 29018895
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles.
    Dimkpa CO; Zeng J; McLean JE; Britt DW; Zhan J; Anderson AJ
    Appl Environ Microbiol; 2012 Mar; 78(5):1404-10. PubMed ID: 22210218
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L.
    Ali B; Sabri AN; Ljung K; Hasnain S
    Lett Appl Microbiol; 2009 May; 48(5):542-7. PubMed ID: 19220737
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biosynthesis of Indole-3-Acetic Acid by the Pine Ectomycorrhizal Fungus Pisolithus tinctorius.
    Frankenberger WT; Poth M
    Appl Environ Microbiol; 1987 Dec; 53(12):2908-13. PubMed ID: 16347506
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The main auxin biosynthesis pathway in Arabidopsis.
    Mashiguchi K; Tanaka K; Sakai T; Sugawara S; Kawaide H; Natsume M; Hanada A; Yaeno T; Shirasu K; Yao H; McSteen P; Zhao Y; Hayashi K; Kamiya Y; Kasahara H
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18512-7. PubMed ID: 22025724
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth.
    Bunsangiam S; Thongpae N; Limtong S; Srisuk N
    Sci Rep; 2021 Jun; 11(1):13094. PubMed ID: 34158557
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chitosan and silver nanoparticles are attractive auxin carriers: A comparative study on the adventitious rooting of microcuttings in apple rootstocks.
    Korpayev S; Karakeçili A; Dumanoğlu H; Ibrahim Ahmed Osman S
    Biotechnol J; 2021 Aug; 16(8):e2100046. PubMed ID: 34028191
    [TBL] [Abstract][Full Text] [Related]  

  • 77.
    Wagi S; Ahmed A
    PeerJ; 2019; 7():e7258. PubMed ID: 31372316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification and Optimisation of Indole-3-Acetic Acid Production of Endophytic Bacteria and Their Effects on Plant Growth.
    Khianngam S; Meetum P; Chiangmai PN; Tanasupawat S
    Trop Life Sci Res; 2023 Mar; 34(1):219-239. PubMed ID: 37065794
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.
    Kumla J; Suwannarach N; Matsui K; Lumyong S
    PLoS One; 2020; 15(1):e0227478. PubMed ID: 31899917
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design.
    Shokri D; Emtiazi G
    Curr Microbiol; 2010 Sep; 61(3):217-25. PubMed ID: 20526603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.