These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38948142)

  • 1. Elucidating microbial iron corrosion mechanisms with a hydrogenase-deficient strain of
    Wang D; Ueki T; Ma P; Xu D; Lovley DR
    mLife; 2024 Jun; 3(2):269-276. PubMed ID: 38948142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Woodard TL; Ueki T; Lovley DR
    mBio; 2023 Apr; 14(2):e0007623. PubMed ID: 36786581
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Ueki T; Lovley DR
    mLife; 2022 Mar; 1(1):13-20. PubMed ID: 38818327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron Corrosion via Direct Metal-Microbe Electron Transfer.
    Tang HY; Holmes DE; Ueki T; Palacios PA; Lovley DR
    mBio; 2019 May; 10(3):. PubMed ID: 31088920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial corrosion of metals: The corrosion microbiome.
    Lekbach Y; Liu T; Li Y; Moradi M; Dou W; Xu D; Smith JA; Lovley DR
    Adv Microb Physiol; 2021; 78():317-390. PubMed ID: 34147188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.
    Zhou C; Zhou Y; Rittmann BE
    Water Res; 2017 Aug; 119():91-101. PubMed ID: 28436827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor.
    Philips J; Van den Driessche N; De Paepe K; Prévoteau A; Gralnick JA; Arends JBA; Rabaey K
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30054363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of acetogens in microbially influenced corrosion of steel.
    Mand J; Park HS; Jack TR; Voordouw G
    Front Microbiol; 2014; 5():268. PubMed ID: 24917861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Microbial Corrosion by Magnetite and Electrically Conductive Pili through Direct Fe
    Jin Y; Zhou E; Ueki T; Zhang D; Fan Y; Xu D; Wang F; Lovley DR
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309005. PubMed ID: 37525962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism.
    Pohorelic BK; Voordouw JK; Lojou E; Dolla A; Harder J; Voordouw G
    J Bacteriol; 2002 Feb; 184(3):679-86. PubMed ID: 11790737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species.
    Tang HY; Yang C; Ueki T; Pittman CC; Xu D; Woodard TL; Holmes DE; Gu T; Wang F; Lovley DR
    ISME J; 2021 Oct; 15(10):3084-3093. PubMed ID: 33972726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.
    van den Berg WA; van Dongen WM; Veeger C
    J Bacteriol; 1991 Jun; 173(12):3688-94. PubMed ID: 1711025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions.
    Caffrey SM; Park HS; Been J; Gordon P; Sensen CW; Voordouw G
    Appl Environ Microbiol; 2008 Apr; 74(8):2404-13. PubMed ID: 18310429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbially mediated metal corrosion.
    Xu D; Gu T; Lovley DR
    Nat Rev Microbiol; 2023 Nov; 21(11):705-718. PubMed ID: 37344552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction.
    Elias DA; Suflita JM; McInerney MJ; Krumholz LR
    Appl Environ Microbiol; 2004 Jan; 70(1):413-20. PubMed ID: 14711670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants.
    Park HS; Lin S; Voordouw G
    Antonie Van Leeuwenhoek; 2008; 93(1-2):79-85. PubMed ID: 17588123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments.
    Zhou E; Li F; Zhang D; Xu D; Li Z; Jia R; Jin Y; Song H; Li H; Wang Q; Wang J; Li X; Gu T; Homborg AM; Mol JMC; Smith JA; Wang F; Lovley DR
    Water Res; 2022 Jul; 219():118553. PubMed ID: 35561622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough.
    Voordouw G
    J Bacteriol; 2002 Nov; 184(21):5903-11. PubMed ID: 12374824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the Periplasmic [Fe] Hydrogenase by Ferrous Iron in Desulfovibrio vulgaris (Hildenborough).
    Bryant RD; Van Ommen Kloeke F; Laishley EJ
    Appl Environ Microbiol; 1993 Feb; 59(2):491-5. PubMed ID: 16348873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.