These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38948152)
1. Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images. Wang Q; Akram AR; Dorward DA; Talas S; Monks B; Thum C; Hopgood JR; Javidi M; Vallejo M Npj Imaging; 2024; 2(1):17. PubMed ID: 38948152 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-assisted co-registration of full-spectral autofluorescence lifetime microscopic images with H&E-stained histology images. Wang Q; Fernandes S; Williams GOS; Finlayson N; Akram AR; Dhaliwal K; Hopgood JR; Vallejo M Commun Biol; 2022 Oct; 5(1):1119. PubMed ID: 36271298 [TBL] [Abstract][Full Text] [Related]
3. Label-Free Characterization of Atherosclerotic Plaques Via High-Resolution Multispectral Fluorescence Lifetime Imaging Microscopy. Han J; Kim S; Jung Kim H; Soo Nam H; Lee MW; Song JW; Kim JW; Yoo H Arterioscler Thromb Vasc Biol; 2023 Jul; 43(7):1295-1307. PubMed ID: 37199160 [TBL] [Abstract][Full Text] [Related]
4. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning. Chen Z; Wong IHM; Dai W; Lo CTK; Wong TTW Mod Pathol; 2024 Jun; 37(6):100487. PubMed ID: 38588884 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia. Sagar MAK; Cheng KP; Ouellette JN; Williams JC; Watters JJ; Eliceiri KW Front Neurosci; 2020; 14():931. PubMed ID: 33013309 [TBL] [Abstract][Full Text] [Related]
6. Improving fluorescence lifetime imaging microscopy phasor accuracy using convolutional neural networks. Mannam V; P Brandt J; Smith CJ; Yuan X; Howard S Front Bioinform; 2023; 3():1335413. PubMed ID: 38187910 [No Abstract] [Full Text] [Related]
7. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Brodwolf R; Volz-Rakebrand P; Stellmacher J; Wolff C; Unbehauen M; Haag R; Schäfer-Korting M; Zoschke C; Alexiev U Theranostics; 2020; 10(14):6322-6336. PubMed ID: 32483455 [TBL] [Abstract][Full Text] [Related]
10. Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. Sun Y; You S; Du X; Spaulding A; Liu ZG; Chaney EJ; Spillman DR; Marjanovic M; Tu H; Boppart SA Quant Imaging Med Surg; 2020 Nov; 10(11):2177-2190. PubMed ID: 33139997 [TBL] [Abstract][Full Text] [Related]
11. Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions. Duran-Sierra E; Cheng S; Cuenca-Martinez R; Malik B; Maitland KC; Lisa Cheng YS; Wright J; Ahmed B; Ji J; Martinez M; Al-Khalil M; Al-Enazi H; Jo JA Oral Oncol; 2020 Jun; 105():104635. PubMed ID: 32247986 [TBL] [Abstract][Full Text] [Related]
12. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related]
13. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. Datta R; Gillette A; Stefely M; Skala MC J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34247457 [TBL] [Abstract][Full Text] [Related]
14. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging. Wang H; Liang X; Mohammed YH; Thomas JA; Bridle KR; Thorling CA; Grice JE; Xu ZP; Liu X; Crawford DH; Roberts MS Biomed Opt Express; 2015 Mar; 6(3):780-92. PubMed ID: 25798303 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues. Smolen JA; Wooley KL PNAS Nexus; 2022 Nov; 1(5):pgac235. PubMed ID: 36712353 [TBL] [Abstract][Full Text] [Related]
16. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data. Monteleone A; Schary W; Wenzel F; Langhals H; Dietrich DR Chem Biol Interact; 2021 Jun; 342():109466. PubMed ID: 33865829 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence lifetime imaging is able to recognize different hematopoietic precursors in unstained routine bone marrow films. da Silva FAB; Racanelli AP; Lorand-Metze I; Metze K Cytometry A; 2021 Jun; 99(6):641-646. PubMed ID: 33847043 [TBL] [Abstract][Full Text] [Related]
18. Unstained Tissue Imaging and Virtual Hematoxylin and Eosin Staining of Histologic Whole Slide Images. Koivukoski S; Khan U; Ruusuvuori P; Latonen L Lab Invest; 2023 May; 103(5):100070. PubMed ID: 36801642 [TBL] [Abstract][Full Text] [Related]
19. Creating Virtual Hematoxylin and Eosin Images using Samples Imaged on a Commercial CODEX Platform. Simonson PD; Ren X; Fromm JR J Pathol Inform; 2021; 12():52. PubMed ID: 35070481 [TBL] [Abstract][Full Text] [Related]
20. Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images. Riendeau JM; Gillette AA; Guzman EC; Cruz MC; Kralovec A; Udgata S; Schmitz A; Deming DA; Cimini BA; Skala MC bioRxiv; 2024 Jun; ():. PubMed ID: 38915614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]