BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38948444)

  • 1. Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches.
    Lezcano DA; Zhetpissov Y; Cheng A; Kim JS; Iordachita II
    J Med Robot Res; 2024; 9(1-2):. PubMed ID: 38948444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches.
    Lezcano DA; Zhetpissov Y; Cheng A; Kim JS; Iordachita II
    ArXiv; 2023 Sep; ():. PubMed ID: 37731661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lie-Group Theoretic Approach to Shape-Sensing Using FBG-Sensorized Needles Including Double-Layer Tissue and S-Shape Insertions.
    Lezcano DA; Iordachita II; Kim JS
    IEEE Sens J; 2022 Nov; 22(22):22232-22243. PubMed ID: 37216067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Fiber -Based Needle Shape Sensing: Three-channel Single Core vs. Multicore Approaches.
    Cheng A; Lezcano DA; Kim JS; Iordachita II
    Int Symp Med Robot; 2023 Apr; 2023():. PubMed ID: 37292169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward FBG-Sensorized Needle Shape Detection in Real Tissue Insertions.
    Kim MJ; Lezcano DA; Kim JS; Iordachita II
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4397-4401. PubMed ID: 36086006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward FBG-Sensorized Needle Shape Prediction in Tissue Insertions.
    Lezcano DA; Kim MJ; Iordachita II; Kim JS
    Rep U S; 2022 Oct; 2022():3505-3511. PubMed ID: 36636257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D Path-Following Control for Steerable Needles With Fiber Bragg Gratings in Multi-Core Fibers.
    Donder A; Baena FRY
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):1072-1085. PubMed ID: 36150005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards human-controlled, real-time shape sensing based flexible needle steering for MRI-guided percutaneous therapies.
    Li M; Li G; Gonenc B; Duan X; Iordachita I
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27487833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber Bragg gratings-based sensing for real-time needle tracking during MR-guided brachytherapy.
    Borot de Battisti M; Denis de Senneville B; Maenhout M; Lagendijk JJ; van Vulpen M; Hautvast G; Binnekamp D; Moerland MA
    Med Phys; 2016 Oct; 43(10):5288. PubMed ID: 27782713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory Generation of FBG-Sensorized Needles for Insertions into Multi-Layer Tissue.
    Lezcano DA; Iordachita II; Kim JS
    Proc IEEE Sens; 2020 Oct; 2020():. PubMed ID: 34149973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Automatic Robotic Calibration System for Flexible Needles with FBG Sensors.
    Song K; Lezcano DA; Sun G; Kim JS; Iordachita II
    Int Symp Med Robot; 2021 Nov; 2021():. PubMed ID: 35187545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
    Elayaperumal S; Plata JC; Holbrook AB; Park YL; Pauly KB; Daniel BL; Cutkosky MR
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2128-39. PubMed ID: 24968093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics modelling and dynamics analysis of an SMA-actuated active flexible needle for feedback-controlled manipulation in phantom.
    Karimi S; Konh B
    Med Eng Phys; 2022 Sep; 107():103846. PubMed ID: 36068028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composed Multicore Fiber Structure for Extended Sensor Multiplexing with Fiber Bragg Gratings.
    Idrisov R; Lorenz A; Rothhardt M; Bartelt H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting stages of needle penetration into tissues through force estimation at needle tip using fiber Bragg grating sensors.
    Kumar S; Shrikanth V; Amrutur B; Asokan S; Bobji MS
    J Biomed Opt; 2016 Dec; 21(12):127009. PubMed ID: 28036093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of needle position measurements using fiber Bragg gratings.
    Henken K; Van Gerwen D; Dankelman J; Van Den Dobbelsteen J
    Minim Invasive Ther Allied Technol; 2012 Nov; 21(6):408-14. PubMed ID: 22455615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing.
    van de Berg NJ; Dankelman J; van den Dobbelsteen JJ
    Med Eng Phys; 2015 Jun; 37(6):617-22. PubMed ID: 25922213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber optical shape sensing of flexible instruments for endovascular navigation.
    Jäckle S; Eixmann T; Schulz-Hildebrandt H; Hüttmann G; Pätz T
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2137-2145. PubMed ID: 31493113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.
    Elayaperumal S; Bae JH; Daniel BL; Cutkosky MR
    Rep U S; 2014 Sep; 2014():3975-3981. PubMed ID: 26509101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber Optic Distributed Sensing Network for Shape Sensing-Assisted Epidural Needle Guidance.
    Amantayeva A; Adilzhanova N; Issatayeva A; Blanc W; Molardi C; Tosi D
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.