These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38948680)

  • 1. Understanding the flow behavior around marine biofilms.
    Romeu MJ; Miranda JM; de Jong ED; Morais J; Vasconcelos V; Sjollema J; Mergulhão FJ
    Biofilm; 2024 Jun; 7():100204. PubMed ID: 38948680
    [No Abstract]   [Full Text] [Related]  

  • 2. Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions.
    Romeu MJ; Alves P; Morais J; Miranda JM; de Jong ED; Sjollema J; Ramos V; Vasconcelos V; Mergulhão FJM
    Environ Microbiol; 2019 Nov; 21(11):4411-4424. PubMed ID: 31573125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates.
    Gomes LC; Moreira JM; Miranda JM; Simões M; Melo LF; Mergulhão FJ
    J Microbiol Methods; 2013 Dec; 95(3):342-9. PubMed ID: 24140575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 96-well microtiter plates for biofouling simulation in biomedical settings.
    Gomes LC; Moreira JM; Teodósio JS; Araújo JD; Miranda JM; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2014; 30(5):535-46. PubMed ID: 24684538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relative Importance of Shear Forces and Surface Hydrophobicity on Biofilm Formation by Coccoid Cyanobacteria.
    Faria SI; Teixeira-Santos R; Romeu MJ; Morais J; Vasconcelos V; Mergulhão FJ
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32178447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.
    Salek MM; Sattari P; Martinuzzi RJ
    Ann Biomed Eng; 2012 Mar; 40(3):707-28. PubMed ID: 22042624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical hydrodynamic force levels for efficient removal of oral biofilms in simulated interdental spaces.
    Hotic M; Ackermann M; Bopp J; Hofmann N; Karygianni L; Paqué PN
    Clin Oral Investig; 2024 May; 28(6):346. PubMed ID: 38819592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions.
    Gomes LC; Mergulhão FJM
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Deehan D; Longyear J; Stoodley P; Chen J
    Biotechnol Bioeng; 2022 Sep; 119(9):2551-2563. PubMed ID: 35610631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD-DEM modelling of biofilm streamer oscillations and their cohesive failure in fluid flow.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Chen J
    Biotechnol Bioeng; 2021 Feb; 118(2):918-929. PubMed ID: 33146404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel.
    Kerdi S; Qamar A; Vrouwenvelder JS; Ghaffour N
    Water Res; 2021 Jan; 188():116502. PubMed ID: 33065413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.
    Risse-Buhl U; Anlanger C; Kalla K; Neu TR; Noss C; Lorke A; Weitere M
    Water Res; 2017 Dec; 127():211-222. PubMed ID: 29049969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of hydrodynamic conditions and microscale surface roughness on the critical shear stress to develop and thickness of early-stage Pseudomonas putida biofilms.
    Wei G; Yang JQ
    Biotechnol Bioeng; 2023 Jul; 120(7):1797-1808. PubMed ID: 37102364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomic analysis of marine biofilms formed by filamentous cyanobacterium.
    Romeu MJ; Domínguez-Pérez D; Almeida D; Morais J; Araújo MJ; Osório H; Campos A; Vasconcelos V; Mergulhão FJ
    Environ Res; 2021 Oct; 201():111566. PubMed ID: 34181917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
    Savorana G; Słomka J; Stocker R; Rusconi R; Secchi E
    Soft Matter; 2022 May; 18(20):3878-3890. PubMed ID: 35535650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach.
    Romeu MJL; Domínguez-Pérez D; Almeida D; Morais J; Campos A; Vasconcelos V; Mergulhão FJM
    Biofouling; 2020 Jul; 36(6):631-645. PubMed ID: 32715767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.