BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38948816)

  • 1. Mutations in the albinism gene
    Choy S; Thakur S; Polyakov E; Abdelaziz J; Lloyd E; Enriquez M; Jayan N; Fily Y; McGaugh S; Keene AC; Kowalko JE
    bioRxiv; 2024 Jun; ():. PubMed ID: 38948816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish.
    O'Gorman M; Thakur S; Imrie G; Moran RL; Choy S; Sifuentes-Romero I; Bilandžija H; Renner KJ; Duboué E; Rohner N; McGaugh SE; Keene AC; Kowalko JE
    Curr Biol; 2021 Aug; 31(16):3694-3701.e4. PubMed ID: 34293332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus.
    Klaassen H; Wang Y; Adamski K; Rohner N; Kowalko JE
    Dev Biol; 2018 Sep; 441(2):313-318. PubMed ID: 29555241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.
    Bilandžija H; Ma L; Parkhurst A; Jeffery WR
    PLoS One; 2013; 8(11):e80823. PubMed ID: 24282555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele.
    Gross JB; Wilkens H
    Heredity (Edinb); 2013 Aug; 111(2):122-30. PubMed ID: 23572122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish.
    Lloyd E; Olive C; Stahl BA; Jaggard JB; Amaral P; Duboué ER; Keene AC
    Dev Biol; 2018 Sep; 441(2):328-337. PubMed ID: 29772227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus.
    Ma L; Jeffery WR; Essner JJ; Kowalko JE
    PLoS One; 2015; 10(3):e0119370. PubMed ID: 25774757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic plasticity as a mechanism of cave colonization and adaptation.
    Bilandžija H; Hollifield B; Steck M; Meng G; Ng M; Koch AD; Gračan R; Ćetković H; Porter ML; Renner KJ; Jeffery W
    Elife; 2020 Apr; 9():. PubMed ID: 32314737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the genetic basis of trait evolution in the Mexican cavefish.
    Oliva C; Hinz NK; Robinson W; Barrett Thompson AM; Booth J; Crisostomo LM; Zanineli S; Tanner M; Lloyd E; O'Gorman M; McDole B; Paz A; Kozol R; Brown EB; Kowalko JE; Fily Y; Duboue ER; Keene AC
    Evol Dev; 2022 Sep; 24(5):131-144. PubMed ID: 35924750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence on reduced aggression through shared behavioral traits in multiple populations of Astyanax mexicanus.
    Rodriguez-Morales R; Gonzalez-Lerma P; Yuiska A; Han JH; Guerra Y; Crisostomo L; Keene AC; Duboue ER; Kowalko JE
    BMC Ecol Evol; 2022 Oct; 22(1):116. PubMed ID: 36241984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in Mc1r gene expression are associated with regressive pigmentation in Astyanax cavefish.
    Stahl BA; Gross JB
    Dev Genes Evol; 2015 Nov; 225(6):367-75. PubMed ID: 26462499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration attraction response is a plastic trait in blind Mexican tetra (Astyanax mexicanus), variable within subpopulations inhabiting the same cave.
    Espinasa L; Heintz C; Rétaux S; Yoshisawa M; Agnès F; Ornelas-Garcia P; Balogh-Robinson R
    J Fish Biol; 2021 Jan; 98(1):304-316. PubMed ID: 33047311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary modifications of
    Espinasa L; Diamant R; Vinepinsky E; Espinasa M
    Zool Res; 2023 Jul; 44(4):750-760. PubMed ID: 37464932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing the blind cavefish
    Kowalko J
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation.
    Riddle MR; Aspiras A; Damen F; McGaugh S; Tabin JA; Tabin CJ
    BMC Ecol Evol; 2021 May; 21(1):94. PubMed ID: 34020589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.
    Protas ME; Hersey C; Kochanek D; Zhou Y; Wilkens H; Jeffery WR; Zon LI; Borowsky R; Tabin CJ
    Nat Genet; 2006 Jan; 38(1):107-11. PubMed ID: 16341223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex origin of Astyanax cavefish.
    Gross JB
    BMC Evol Biol; 2012 Jun; 12():105. PubMed ID: 22747496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced prey capture skills in Astyanax cavefish larvae are independent from eye loss.
    Espinasa L; Bibliowicz J; Jeffery WR; Rétaux S
    Evodevo; 2014; 5():35. PubMed ID: 25908953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish.
    Yoshizawa M; Robinson BG; Duboué ER; Masek P; Jaggard JB; O'Quin KE; Borowsky RL; Jeffery WR; Keene AC
    BMC Biol; 2015 Feb; 13():15. PubMed ID: 25761998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind cavefish evolved food-searching behavior without changing sensory modality compared with sighted conspecies in the dark.
    Kuball K; Fernandes VFL; Takagi D; Yoshizawa M
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.