These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38949110)

  • 41. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.
    Akamatsu K; Kanasugi S; Nakao S; Weitz DA
    Langmuir; 2015 Jun; 31(25):7166-72. PubMed ID: 26057203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance.
    Song XC; Yu YL; Yang GY; Jiang AL; Ruan YJ; Fan SH
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112560. PubMed ID: 35636322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding the microfluidic generation of double emulsion droplets with alginate shell.
    Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion.
    Mohd Isa NS; El Kadri H; Vigolo D; Gkatzionis K
    RSC Adv; 2021 Feb; 11(13):7738-7749. PubMed ID: 35423274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs.
    Simovic S; Heard P; Hui H; Song Y; Peddie F; Davey AK; Lewis A; Rades T; Prestidge CA
    Mol Pharm; 2009; 6(3):861-72. PubMed ID: 19358600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uniform Microparticles with Controllable Highly Interconnected Hierarchical Porous Structures.
    Zhang MJ; Wang W; Yang XL; Ma B; Liu YM; Xie R; Ju XJ; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13758-67. PubMed ID: 25923421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical Assembly of Two-Dimensional Polymers into Colloidosomes and Microcapsules.
    Zhang Z; Wang S; Yang Y; Li W; Liu P; Wang WJ
    ACS Macro Lett; 2021 Jul; 10(7):933-939. PubMed ID: 35549182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Construction of core-shell microcapsules
    Jin S; Wei X; Ren J; Jiang Z; Abell C; Yu Z
    Lab Chip; 2020 Aug; 20(17):3104-3108. PubMed ID: 32766643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of soft microcapsules containing multiple core materials with interfacial dehydration reaction using the (W/O)/W emulsion.
    Taguchi Y; Suzuki T; Saito N; Yokoyama H; Tanaka M
    J Microencapsul; 2017 Dec; 34(8):744-753. PubMed ID: 29119840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity.
    Wu Z; Werner JG; Weitz DA
    ACS Macro Lett; 2021 Jan; 10(1):116-121. PubMed ID: 35548985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic-assisted Formation of Highly Monodisperse and Mesoporous Silica Soft Microcapsules.
    Bchellaoui N; Hayat Z; Mami M; Dorbez-Sridi R; El Abed AI
    Sci Rep; 2017 Nov; 7(1):16326. PubMed ID: 29180632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules.
    Guerzoni LPB; Bohl J; Jans A; Rose JC; Koehler J; Kuehne AJC; De Laporte L
    Biomater Sci; 2017 Jul; 5(8):1549-1557. PubMed ID: 28604857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery.
    Pessi J; Santos HA; Miroshnyk I; JoukoYliruusi ; Weitz DA; Mirza S
    Int J Pharm; 2014 Sep; 472(1-2):82-7. PubMed ID: 24928131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of antibubbles from core-shell double emulsion templates produced by microfluidics.
    Silpe JE; Nunes JK; Poortinga AT; Stone HA
    Langmuir; 2013 Jul; 29(28):8782-7. PubMed ID: 23758211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic Fabrication of Monodisperse Microcapsules for Thermo-Triggered Release of Liposoluble Drugs.
    Wang Y; Li Y; Gong J; Ma J
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Broad-temperature-range mechanically tunable hydrogel microcapsules for controlled active release.
    Jeong HS; Kim E; Park JP; Lee SJ; Lee H; Choi CH
    J Control Release; 2023 Apr; 356():337-346. PubMed ID: 36871645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.