BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38949286)

  • 1. A deep learning method for reflective boundary estimation.
    Arikan T; Weiss A; Vishnu H; Deane GB; Singer AC; Wornell GW
    J Acoust Soc Am; 2024 Jul; 156(1):65-80. PubMed ID: 38949286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An architecture for passive joint localization and structure learning in reverberant environments.
    Arikan T; Weiss A; Vishnu H; Deane GB; Singer AC; Wornell GW
    J Acoust Soc Am; 2023 Jan; 153(1):665. PubMed ID: 36732226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Resolution Time Reversal Method for Target Localization in Reverberant Environments.
    Ma H; Shang T; Li G; Li Z
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A construction method of reverberation suppression filter using an end-to-end network.
    Wang Z; Zhang H; Chen X; An Y
    PLoS One; 2023; 18(10):e0293365. PubMed ID: 37874812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining multi-scale composite windows with hierarchical smoothing strategy for fingerprint orientation field computation.
    Li H; Wang T; Tang Y; Wu J; Yu P; Guo L; Chen J; Zhang Y
    Biomed Eng Online; 2018 Oct; 17(1):136. PubMed ID: 30285765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes.
    Meneses JP; Arrieta C; Della Maggiora G; Besa C; Urbina J; Arrese M; Gana JC; Galgani JE; Tejos C; Uribe S
    Eur Radiol; 2023 Sep; 33(9):6557-6568. PubMed ID: 37014405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Volterra series-based method for extracting target echoes in the seafloor mining environment.
    Zhao H; Ji Y; Hong Y; Hao Q; Ma L
    Ultrasonics; 2016 Sep; 71():29-39. PubMed ID: 27262353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological brain imaging based on simulation-driven deep learning in the context of epilepsy.
    Yu Z; Kachenoura A; Jeannès RLB; Shu H; Berraute P; Nica A; Merlet I; Albera L; Karfoul A
    Neuroimage; 2024 Jan; 285():120490. PubMed ID: 38103624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI.
    Zhang H; Wang C; Chen W; Wang F; Yang Z; Xu S; Wang H
    Neuroimage; 2021 Dec; 244():118632. PubMed ID: 34627977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep unsupervised adversarial domain adaptation for underwater source range estimation.
    Long R; Zhou J; Liang N; Yang Y; Shen H
    J Acoust Soc Am; 2023 Nov; 154(5):3125-3144. PubMed ID: 37966332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition.
    Yang H; Li J; Shen S; Xu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust water-fat separation based on deep learning model exploring multi-echo nature of mGRE.
    Liu K; Li X; Li Z; Chen Y; Xiong H; Chen F; Bao Q; Liu C
    Magn Reson Med; 2021 May; 85(5):2828-2841. PubMed ID: 33231896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust high-resolution direction-of-arrival estimation method using DenseBlock-based U-net.
    Sun D; Jia Z; Teng T; Ma C
    J Acoust Soc Am; 2022 May; 151(5):3426. PubMed ID: 35649933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online reverberation time and clarity estimation in dynamic acoustic conditions.
    Götz P; Tuna C; Walther A; Habets EAP
    J Acoust Soc Am; 2023 Jun; 153(6):3532-3542. PubMed ID: 37387542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater Rescue Target Detection Based on Acoustic Images.
    Hu S; Liu T
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape.
    Dubrovinskaya E; Kebkal V; Kebkal O; Kebkal K; Casari P
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.