These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38949357)

  • 41. Study on the interfacial properties of polymers around a nanoparticle.
    Li CY; Huang JH; Li H; Luo MB
    RSC Adv; 2020 Jul; 10(47):28075-28082. PubMed ID: 35519124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption-induced slip inhibition for polymer melts on ideal substrates.
    Ilton M; Salez T; Fowler PD; Rivetti M; Aly M; Benzaquen M; McGraw JD; Raphaël E; Dalnoki-Veress K; Bäumchen O
    Nat Commun; 2018 Mar; 9(1):1172. PubMed ID: 29563496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensing adsorption kinetics through slip velocity measurements of polymer melts.
    Hénot M; Drockenmuller E; Léger L; Restagno F
    Eur Phys J E Soft Matter; 2018 Jul; 41(7):83. PubMed ID: 29974276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of surface properties and polymer chain length on polymer adsorption in solution.
    Lin EY; Frischknecht AL; Winey KI; Riggleman RA
    J Chem Phys; 2021 Jul; 155(3):034701. PubMed ID: 34293881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How irreversible adsorption affects interfacial properties of polymers.
    Napolitano S; Sferrazza M
    Adv Colloid Interface Sci; 2017 Sep; 247():172-177. PubMed ID: 28202131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Critical conditions of polymer chromatography: an insight from SCFT modeling.
    Yang S; Neimark AV
    J Chem Phys; 2013 Jun; 138(24):244903. PubMed ID: 23822270
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of charged and neutral polymer chains on silica surfaces: the role of electrostatics, volume exclusion, and hydrogen bonding.
    Spruijt E; Biesheuvel PM; de Vos WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012601. PubMed ID: 25679636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New mechanism of nonequilibrium polymer adsorption.
    Johnson HE; Granick S
    Science; 1992 Feb; 255(5047):966-8. PubMed ID: 17793158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lattice cluster theory for polymer melts with specific interactions.
    Xu WS; Freed KF
    J Chem Phys; 2014 Jul; 141(4):044909. PubMed ID: 25084958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorbed and spread films of amphiphilic triblock copolymers based on poly(2,3-dihydroxypropyl methacrylate) and poly(propylene oxide) at the air-water interface.
    Amado E; Blume A; Kressler J
    Langmuir; 2010 Apr; 26(8):5507-19. PubMed ID: 19950939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption kinetics of amphiphilic diblock copolymers: from kinetically frozen colloids to macrosurfactants.
    Theodoly O; Jacquin M; Muller P; Chhun S
    Langmuir; 2009 Jan; 25(2):781-93. PubMed ID: 19177645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Irreversible adsorption from dilute polymer solutions.
    O'Shaughnessy B; Vavylonis D
    Eur Phys J E Soft Matter; 2003 Jul; 11(3):213-230. PubMed ID: 15011043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient equilibration of confined and free-standing films of highly entangled polymer melts.
    Hsu HP; Kremer K
    J Chem Phys; 2020 Oct; 153(14):144902. PubMed ID: 33086819
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lattice theory for binding of linear polymers to a solid substrate from polymer melts. II. Influence of van der Waals interactions and chain semiflexibility on molecular binding and adsorption.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2019 Sep; 151(12):124709. PubMed ID: 31575163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.
    Sakata S; Inoue Y; Ishihara K
    Langmuir; 2015 Mar; 31(10):3108-14. PubMed ID: 25719761
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of molecular adsorption and rotation on nonequilibrium sites.
    Tierney HL; Jewell AD; Baber AE; Iski EV; Sykes EC
    Langmuir; 2010 Oct; 26(19):15350-5. PubMed ID: 20806927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion.
    Singh N; Cui X; Boland T; Husson SM
    Biomaterials; 2007 Feb; 28(5):763-71. PubMed ID: 17049595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of random copolymers from a melt onto a solid surface: Monte Carlo studies.
    Kłos JS; Romeis D; Sommer JU
    J Chem Phys; 2010 Jan; 132(2):024907. PubMed ID: 20095709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane curvature induced by polymer adsorption.
    Kim YW; Sung W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041910. PubMed ID: 11308880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.