BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38949531)

  • 1. Epidemic spreading on spatial higher-order network.
    Gu W; Qiu Y; Li W; Zhang Z; Liu X; Song Y; Wang W
    Chaos; 2024 Jul; 34(7):. PubMed ID: 38949531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral disease spreading in grouped population.
    Gwizdałła T
    Comput Methods Programs Biomed; 2020 Dec; 197():105715. PubMed ID: 32898813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging social networks for understanding the evolution of epidemics.
    Martín G; Marinescu MC; Singh DE; Carretero J
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S14. PubMed ID: 22784620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of human motion patterns on epidemic spreading dynamics.
    Gu W; Li W; Gao F; Su S; Sun B; Wang W
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38305051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.
    González-Parra G; Villanueva RJ; Ruiz-Baragaño J; Moraño JA
    Acta Trop; 2015 Mar; 143():29-35. PubMed ID: 25559047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the impact of the weather conditions on the influenza propagation.
    Singh DE; Marinescu MC; Carretero J; Delgado-Sanz C; Gomez-Barroso D; Larrauri A
    BMC Infect Dis; 2020 Apr; 20(1):265. PubMed ID: 32248792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium.
    Luca G; Kerckhove KV; Coletti P; Poletto C; Bossuyt N; Hens N; Colizza V
    BMC Infect Dis; 2018 Jan; 18(1):29. PubMed ID: 29321005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network structure-based interventions on spatial spread of epidemics in metapopulation networks.
    Wang B; Gou M; Guo Y; Tanaka G; Han Y
    Phys Rev E; 2020 Dec; 102(6-1):062306. PubMed ID: 33466001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressing epidemic spreading by optimizing the allocation of resources between prevention and treatment.
    Li J; Yang C; Ma X; Gao Y; Fu C; Yang H
    Chaos; 2019 Nov; 29(11):113108. PubMed ID: 31779370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.
    Grefenstette JJ; Brown ST; Rosenfeld R; DePasse J; Stone NT; Cooley PC; Wheaton WD; Fyshe A; Galloway DD; Sriram A; Guclu H; Abraham T; Burke DS
    BMC Public Health; 2013 Oct; 13():940. PubMed ID: 24103508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic spreading on multi-layer networks with active nodes.
    Zhang H; Cao L; Fu C; Cai S; Gao Y
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37459223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model.
    Smieszek T; Balmer M; Hattendorf J; Axhausen KW; Zinsstag J; Scholz RW
    BMC Infect Dis; 2011 May; 11():115. PubMed ID: 21554680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals.
    Urabe CT; Tanaka G; Aihara K; Mimura M
    PLoS One; 2016; 11(12):e0168127. PubMed ID: 27973605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections.
    Arduin H; Domenech de Cellès M; Guillemot D; Watier L; Opatowski L
    BMC Infect Dis; 2017 Jun; 17(1):382. PubMed ID: 28577533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel measurement of spreading pattern of influenza epidemic by using weighted standard distance method: retrospective spatial statistical study of influenza, Japan, 1999-2009.
    Shobugawa Y; Wiafe SA; Saito R; Suzuki T; Inaida S; Taniguchi K; Suzuki H
    Int J Health Geogr; 2012 Jun; 11():20. PubMed ID: 22713508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling COVID-19 spread using multi-agent simulation with small-world network approach.
    Fan Q; Li Q; Chen Y; Tang J
    BMC Public Health; 2024 Mar; 24(1):672. PubMed ID: 38431581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.